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Summary

1. The use of stable isotope data to infer characteristics of community structure and niche width of

community members has become increasingly common. Although these developments have
provided ecologists with new perspectives, their full impact has been hampered by an inability to

statistically compare individual communities using descriptive metrics.
2. We solve these issues by reformulating themetrics in a Bayesian framework. This reformulation

takes account of uncertainty in the sampled data and naturally incorporates error arising from the
sampling process, propagating it through to the derived metrics.

3. Furthermore, we develop novel multivariate ellipse-based metrics as an alternative to the cur-
rently employed Convex Hull methods when applied to single community members. We show that
unlike Convex Hulls, the ellipses are unbiased with respect to sample size, and their estimation via

Bayesian inference allows robust comparison to be made among data sets comprising different
sample sizes.

4. These new metrics, which we call SIBER (Stable Isotope Bayesian Ellipses in R), open up more
avenues for direct comparison of isotopic niches across communities. The computational code to

calculate the new metrics is implemented in the free-to-download package Stable Isotope Analysis
for the R statistical environment.

Key-words: Bayesian Inference, community ecology, R statistics program, statistical methods,
trophic niche width

Introduction

The ecological niche concept has undergone a renaissance is

recent years (Newsome et al. 2007; Soberon 2007). This is

unsurprising given that it can provide insights into a wide

variety of both ecological and evolutionary problems (Martı́-

nez del Rio et al. 2009). Refinements of Hutchinson’s idea

that an ecological niche can be represented as an n-dimen-

sional hypervolume have proposed that it be partitioned into

scenopoetic axes, representing environmental components of

niche space, and bionomic axes, which refermostly to the tro-

phic components of niche space (Hutchinson 1957, 1978).

Recently, it has been argued that location on these axes may

be quantified using stable isotopic ratios (Bolnick et al. 2003;

Bearhop et al. 2004) and have been formalized in the concept

of the ‘isotopic niche’ (Newsome et al. 2007). Stable isotope

ratios can be used in this respect because the values measured

in consumer tissues are tightly linked to those in their diet.

For example, the ratio of heavy to light stable nitrogen iso-

topes (15N ⁄ 14N) increases in a stepwise fashion with each tro-

phic level (Minagawa & Wada 1984; Wada et al. 1987; Fry

1988) and thus is analogous to a bionomic axis. Whereas sta-

ble carbon isotopes (13C ⁄ 12C), although they do alter slightly

with trophic level, reflect the primary carbon sources within a

food web which vary markedly between aquatic and terres-

trial origins (Craig 1953; Chisholm, Nelson & Schwarcz

1982), and thus can be considered as both bionomic and

scenopoetic axes. Additional isotopes, for example of oxygen

and hydrogen can provide more detailed information on

scenopoetic as they vary over geographical scales (Newsome

et al. 2007). Isotopic data are routinely presented as bi-plots,

where the isotopic values of animal tissues may be repre-

sented in d-space (Newsome et al. 2007), and this essentially

delineates an animal’s isotopic niche. Although the isotopic

niche is likely to be tightly correlated to the trophic niche, we

stress that these are not the same and should not be confused.

Nevertheless, the information contained within consumer

stable isotope ratios is predominantly ecological in origin*Correspondence author. E-mail: A.Jackson@tcd.ie
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and therefore can be considered descriptors of key axes in

Hutchinson’s hypervolume, providing ecologically relevant

information about the individual, population or community

they represent. Additionally, by carefully selecting tissues

with appropriate turnover rates in consumers, the variance

among individuals in isotope space can be linked qualita-

tively to among-individual variation in diet (e.g. specialist

and generalist) and hence is an integrated measure of niche

width (Bearhop et al. 2004).

These concepts have been extended by Layman et al.

(2007a), who suggested a series of additional measurements

that could be made to generate metrics of niche structure

from individuals to entire communities.Whilst concerns have

been raised about these approaches (Hoeinghaus et al. 2006),

it is clear that many of the issues can be dealt with by appro-

priate sampling strategies or baseline corrections (Layman &

Post 2008) and they have been used to great effect in a num-

ber of studies (Darimont, Paquet & Reimchen 2009; Martı́-

nez del Rio et al. 2009; Olsson et al. 2009; Quevedo,

Svanbäck & Eklöv 2009). Having said this, the approach will

apply better to some systems than others (as is the case with

all approaches to quantifying niche), and care should be

taken as always to ensure one is satisfied of their suitability to

their system and hypotheses. There are however a number of

ways in which the current framework proposed by Layman

et al. (2007a) might be advanced. Here, we outline several

shortcomings of the existing approach and suggest a number

of ways in which these may be solved.

Briefly, six niche ⁄ community metrics were proposed by

Layman et al. (2007a), which together use summary informa-

tion on the spread and extent of the data points. These are as

follows:

1. d15N range (NR) providing information on the trophic

length of the community;

2. d13C range (CR) giving an estimate of the diversity of

basal resources;

3. total area of the convex hull encompassing the data

points (TA) giving in indication of niche width;

4. mean distance to centroid (CD) providing additional

information on niche width but also species spacing;

5. mean nearest neighbour distance (MNND) providing a

measure of density and clustering of species within the

community;

6. standard deviation of the nearest neighbour distance

(SDNND) giving ameasure of evenness of spatial density

and packing.

To date, most interest appears to centre around the use of

the convex hull area (TA) describing the niche width of the

organism (Quevedo, Svanbäck & Eklöv 2009) or community

in question (Layman et al. 2007a). There are two distinct sit-

uations in which the existing metrics have been applied. The

first is to describe individual components of the community.

Here, the metrics may be applied within a single group mem-

ber within the community and the metrics calculated on a

sample of n individual observations of a taxonomic or func-

tional group of interest; e.g. to describe the isotopic niche

width of grey snappers Lutjanus griseus (Layman et al.

2007b) or perch Perca fluviatilis (Quevedo, Svanbäck & Ek-

löv 2009). The second approach is to apply the metrics to

entire (or at least large parts of) communities of different spe-

cies or functional groups (e.g. Layman et al. 2007a). In this

instance, the data are distilled down to the mean d15N and

d13C values for each of m taxonomic or functional groups,

and the sixmetrics calculated on the resultantm data points.

One of the shortcomings identified herein is that applica-

tion of the metrics to single community group members is

sensitive to sample size, particularly across the range of sizes

frequently encountered in ecological studies (n < 50). Such

behaviour is highly undesirable in situations where sample

sizes differ among samples within studies, or when compari-

sons across multiple studies are conducted. As an alternative

we suggest using metrics based on standard ellipses (Batsch-

elet 1981), comparable to SD in univariate cases, to draw

inference on isotopic niche width instead of convex hulls and

other extreme value metrics. Additionally, we present an

alternative sample size correction for the standard ellipses, to

our knowledge not previously published. These newmethods

will allow robust meta-analyses between studies that contain

different sample sizes.

The second shortcoming of the current framework is that

when applied across an entire community, the metrics do not

incorporate any of the natural variability within the system

into the subsequent summary statistics, and thus provide

only a point estimate of each metric. A similar problem has

recently been discussed with respect to isotopic mixing mod-

els (Jackson et al. 2009; Semmens, Moore & Ward 2009a;

Semmens et al. 2009b). Ignoring the sampling and other

sources of uncertainty makes any subsequent statistical com-

parisons among individual communities challenging at best.

Here, we describe a method based on Bayesian inference

techniques for propagating sampling error on the estimates

of the means of community members to provide measures of

uncertainty surrounding Layman et al.’s (2007a) metrics,

which allows for robust statistical comparisons to be made

among communities.

Finally, we compare our new Bayesian metrics to their

existing analogues using extensive simulation techniques.

The newmethods are presented in detail here andmade avail-

able to researchers via the package Stable Isotope Analysis in

R (SIAR – Parnell et al. 2008, 2010) available to download

from the packages section of the Comprehensive R Archive

Network site (CRAN) – http://cran.r-project.org/. SIAR cur-

rently contains a Bayesian model for solving isotope mixing

models and is now expanded to include additional function-

ality for analysing isotope data in the context of isotopic

niche width.

Materials andmethods

These methods are considered in two sections, the first dealing with

the case for describing niche width on a single member of a commu-

nity (e.g. a single taxonomic species), and the second when inference

across multiple groups is desired (e.g. across foraging guilds or entire
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communities). All analyses are conducted in the R statistical comput-

ing package (R Development Core Team, 2007). Throughout all our

analyses, wemake the assumption that the isotope data under consid-

eration are adequately described by a multivariate normal distribu-

tion. Such an assumption seems appropriate for many instances

based mechanistically on the nature of the data and also reference to

published data (Inger et al. 2006, 2008). The validity of this assump-

tion can and should be tested using one of several statistical tests (e.g.

Székely & Rizzo 2005; e.g. Tan et al. 2005): by default, we provide

output from the Shapiro–Wilk test using mshapiro.test() function in

R (Royston 1982) as a guide, but not definitive rule, for suitability.

Where this assumption is not met for a particular data set, then alter-

native analytical options could be employed such as transformations

or nonparametric measures of dispersion. Indeed, such scenarios

may represent ecologically interesting processes such as phenotypic

variation or plasticity rather than simply being a nuisance.

CASE 1 – METRICS ON SINGLE MEMBERS

Standard ellipses

Central to the proposed new method is the standard ellipse, which is

to bivariate data as SD is to univariate data (Batschelet 1981). The

standard ellipse describing some data x and y is underpinned by its

associated covariance matrix R ¼ r2x covðx; yÞ
covðy;xÞ r2y

! "# $
, which

defines its shape and size, and the means of the x and y that define its

location. The eigenvalues (k) and eigenvectors (v) of R then give the

lengths of the semi-major axis a = k1
)1 and the semi-minor axis

b = k2
)1, and the angle of awith the x axis h = sin)1(v12). Plotting is

then straight forward (Fig. 1), as is computation of the area of the

resultant ellipse (SEA, Standard Ellipse Area) which is given by

SEA = pab. Functions provided in SIAR will perform these tasks

for the user.

Estimating the parameters of the ellipse from data

As the ellipse is likely to be estimated on a sample rather than the

entire population, it is necessary to first determine the covariance

matrix of a sample. In the univariate case, the sample variance (s2)

provides an unbiased estimate of the population variance (r2) for
data x and y. The covariance between the data x and y similarly has

an unbiased algebraic form.Whilst the SE of these individual compo-

nents of the covariance matrix can be calculated on their marginal

distributions, to our knowledge, their joint distribution does not have

a described analytical solution and variation is underestimated in

small sample sizes (Ricklefs &Nealen 1998)meaning that uncertainty

around these mean estimates is difficult to quantify using algebraic

formulae.

Alternatively, it is straight forward to estimate the covariance

matrix of the data using Bayesian inference. In this case, vague nor-

mal priors are assigned to the means, and a vague Inverse-Wishart

prior is used for R (this is a standard conjugate prior for covariance

matrices, McCarthy 2007). The posterior estimate of R is then simu-

lated using Markov chain Monte Carlo (MCMC) (we employ the

function rmultireg() in the R package bayesm; Rossi, Allenby &

McCulloch 2005) according to the formulation:

The Priors

lx $ dnorm 0; r2 ¼ 103
% &

eqn 1a

ly $ dnorm 0; r2 ¼ 103
% &

eqn 1b

R $ wishart%1 q ¼ 2;V ¼ 2 0
0 2

! "# $
eqn 2

The Likelihood

Yi $ MVN lx; ly
' (

;R
% &

eqn 3

In the Bayesian approach, the posterior estimate is calculated by

combining the priors and the likelihoods, and comprises a set of k

iterative draws from the MCMC simulation. For each of these k

draws, posterior values of the means lx and ly and covariance matrix

R value are returned, which can be used to construct an ellipse and

derive metrics such as the area which we refer to as SEAB. This pro-

cess is repeated for all simulated values producing a range of proba-

ble values for the calculated metric reflecting the uncertainty in the

estimatedR. These estimated values can then be compared directly in

a probabilistic manner in terms of how similar or not they are.

Sensitivity of ellipses to sample size

We first suppose a very simple case: a population of organisms’

isotope data are described by a multivariate normal distribution with

means lx = ly = 0 and covariance matrix R ¼ 1 0
0 1

! "
.That is,

their data form a circle around the origin, whose standard ellipse

describes a circle with radius equal to 1.

A typical sampling exercise would involve sampling from some

population and using these values to draw inference on the pop-

ulation as a whole and make comparisons between populations.

We sample from this population, drawing n samples from a mul-

tivariate normal distribution centred on the origin with

Yi¼1:n $ MVN 0 0½ ';Rð Þ and calculate all six of Layman

et al.’s (2007a) metrics from the resultant Y values as well as the

SEA which we propose as a more robust alternative. We varied

sample size from the set n = [3, 4…29, 30, 40…100, 200…1000]

and repeated each sampling process and associated metric calcu-

lations 104 times for each value of n.

Two examples are shown in Fig. 2 for n = 10 and n = 200. Note

that as the convex hull is drawn around the extreme most points, the

area encompassed by the hull increases with sample size, as the addi-

tion of more points can only have either no effect or make the hull

larger, not smaller. The standard ellipse on the other hand contains c.

40% of the data regardless of sample size (Batschelet 1981). The

Fig. 1. Example standard ellipse based on p135 (Batschelet 1981)
showing the sample data (filled circles), standard ellipse, semi-major
axis a and semi-minor axis b as labelled (solid lines).
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ellipse can be rescaled to include more or less of the data as desired;

for instance, multiplying the semi-major and minor axes by 2Æ45 (the
square-root of the inverse of the chi-squared distribution with 2 d.f.)

will create an ellipse that has 95% probability of containing a subse-

quently sampled datum (Chew 1966). Rescaling clearly affects the

absolute size of the resultant ellipses, but not the relative size among

similarly scaled ellipses. On the other hand, Bayesian estimation of

the standard ellipse is subject to fluctuations in the estimate of the

location of the ellipse (arising from uncertainty in the means) and in

the shape (arising from uncertainty in the covariance matrix) and

thus has the benefit of producing more information than a simple

point estimate. Uncertainty in the Bayesian standard ellipse is

expected to be larger for smaller sample sizes and should asymptote

to the population value as n fi ¥ (Fig. 2, grey solid lines). Indeed,

the Bayesian ellipses in Fig. 2b for n = 200 are almost coincidental,

whereas those in 2a for n = 10 are considerably different.

The key results of the larger simulation are summarized in Fig. 3

for the area of the convex hull and the area of the standard ellipse

(SEA).Note that the results for all six of Layman et al.’s (2007a) met-

rics are included in Fig. S1. It is clear that even for this simple case

where the data describe a circle, the laymanmetric of convex hull area

(TA) is highly sensitive to sample size and increases with sample size.

In reality, biological or chemical processes will constrain this to a

maximum, however, the sensitivity across ecologically relevant sam-

ple sizes is what is important to consider here. In contrast, the SEA

asymptotes quickly to a constant value (in this case p, as both a and

b = 1), at around n = 30. The underestimation of the population

SEA for small sample sizes is an undesirable property, as it is likely to

confound comparisons between studies with unequal sample sizes. In

the calculations of the parameters a and b described earlier, which

determine the size, shape and location of the ellipse, the standard Bes-

sel’s correction of (n)1) was applied to all estimations of variance

and covariance. Given that this correction was derived for 1-dimen-

sional data and corresponds to the loss of a single degree of freedom,

we argue that (n)2) would be a more suitable correction for 2-dimen-

sional data considered here. We therefore propose the calculation of

a corrected standard ellipse based on this formulation, whose associ-

ated statistics we denote with the subscript c. The application of this

correction leads to a slightly larger ellipse for small sample sizes, but

one that has the same geometrical shape (i.e. a ⁄ b = ac ⁄ bc). The rela-
tionship between SEA and SEAc can be understood by SEAc = -

SEA(n)1)(n)2))1. This correction has the desirable property of

approaching 1 as n fi ¥, is equal to 2 when n takes the minimum

suitable value 3 and provides a highly satisfactory correction for all

sample sizes (dashed line, Fig. 3b). However, to be convinced that

this correction is applicable in situations other than that of a specific

covariance structure R, the simulation process was extended to a

more general situation.

(a) (b)

Fig. 2. Samples drawn from the same population (open circles) and their respective convex hulls (solid black lines), frequentist standard ellipses
(dotted black lines) and two posterior estimates of the Bayesian standard ellipses (solid grey lines) for (a) n = 10 and (b) n = 200. The true pop-
ulation standard ellipse for both examples is a circle with radius = 1.

(a) (b)

Fig. 3. The effect of sample size (n, on log scale) on (a) the area of the convex hull (TA) and (b) the standard ellipse area (SEA) for a fixed popula-

tion with R ¼ 1 0
0 1

! "
, which has area equal to p. The results depict the mean (open circles) ± the SD (solid lines) of 1000 replicates for each

sample size. The dotted line in (b) is the corresponding mean SEAc for the data.
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Comprehensive simulation of SEA, SEAc and SEAB

The behaviour of SEA and its relationship to sample size was

explored more fully in a simulation that varied both sample size and

the population covariance matrix R governing the size and shape of

the data.

A sampling process on a population of related (e.g. taxonomically

or functionally) individual organisms was simulated. The observa-

tions were assumed to come from a bivariate multivariate normal dis-

tribution describing their d13C and d15N values. The simulations

were centred on the origin for simplicity, with no loss of generality as

it is the area and shape of the data rather than its location that is of

interest here.

A single sample is generated as follows:

1. A sample size is drawn randomly from the set:

n $ N½3; 4::::29; 30; 40:::100; 200:::1000'

This ensures that small sample sizes are well represented in the

simulation study, and only sample sizes >3 are included as a

convex hull or ellipse cannot be generated on fewer values.

2. A population is defined by creating a covariance matrix (R)
describing the relationship and structure of the d13C and d15N
values. This is achieved by drawing from aWishart distribution.

R $ Wishart q ¼ 2;V ¼ 2 0
0 2

! "# $
eqn 4

Where q is the degrees of freedom of the Wishart distribution

andV is the scale matrix. The resultant distribution of the values

forR is included in the Fig. S2.

3. n · 2 bivariate samples are then drawn from a multivariate

normal distribution centred on the origin with:

Yi¼1:n $ MVN 0 0½ ';Rð Þ eqn 5

4. Based on these samples Y, the estimated SEA SÊAand the

sample size corrected version SÊAc were calculated.

Additionally, the SEA was estimated using the Bayesian

methods outlined earlier, to yield SÊAB. The bias, or differ-

ence between the estimated values of SÊAand SÊAc, and

the population value SEA (determined directly from the

known population covariance matrix R) were also calcu-

lated.

Steps 1–4 are then repeated for 105 replicates (104 times for Bayes-

ian estimate as it is much more computationally intensive) and the

results summarized in the following section.

The estimated SEA provides a good estimate of the population

SEA although the persistent tendency for underestimation at small

sample sizes remains (Fig. 4a). Calculating SEAc instead appears to

nullify this bias entirely across the full range of sample sizes and data

structures as determined by their randomly varied covariance matrix

R (Fig. 4b). The Bayesian estimate, SEAB (Fig. 4c), captures all the

same properties as SEAc, being unbiased with respect to sample size

and exhibitingmore uncertainty with smaller sample size.

CASE 2 – COMMUNITY METRICS

In contrast to Case 1, we now are concerned with calculating metrics

to describe the arrangement of taxonomic ⁄ functional groups as part
of a larger community. The current method employed here is to take

the mean of the samples for each group and calculate the six metrics

based on these means (Layman et al. 2007a). This process can ignore

important ecological information by neglecting to incorporate any

uncertainty in the derived means and therefore this error is not

included in the presentation of the metrics such as convex hull area

(TA). Here, we develop Bayesian methods for propagating uncer-

tainty in the mean arising from a natural sampling process into the

resultant metrics.

Data for this situation were simulated by drawing each group that

makes up a member of the community from its own independent

multivariate normal distribution. We created j = 1, 2…m groups

which each comprise i = 1, 2…n samples. The population mean

d13C and d15N values for each of them groups were drawn from uni-

form distributions between )20 and 0, and )5 and 10, respectively.

The ith observation comprising two dependent random numbers,

which belongs to the jth group is then simulated by:

Rj $ wishart q ¼ 2;V ¼ 2 0
0 2

! "# $
eqn 6

Yi;j $ MVN d13 !C; d15 !N
' (

;Rj

% &
eqn 7

An example simulated dataset is shown in Fig. 5, created with

m = 8 groups and n = 5 samples per group. Here, the sampled

data are presented in Fig. 5a, and the estimated convex hull is

based on a mean of these samples as the solid black line. For com-

parison, the ‘true’ population convex hull is shown as a dashed line.

(a) (b) (c)

Fig. 4. The bias in the estimation of the population standard ellipse area (SEA) as a function of sample size (n, on log scale) based on (a) SÊA,
(b) after small sample size correction SÊAcand (c) the Bayesian estimation SÊAB. Points represent the mean of the posterior estimate. Note that
the y-axes have been restricted for clarity leaving some extreme values lie outside their depicted bounds. Grey points are the results of simula-
tions, and the heavy solid line represents their mean value for a given n. The thin black line shows perfect estimate at y = 0 (only visible in a for
n < 30).
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Intuitively, the sample-derived and population hulls are not identi-

cal but appear reassuringly close. The question now is: how does

uncertainty in the estimation of the population means affect the

convex hulls? To address this question, we use Bayesian inference

to fit a multivariate normal distribution to each of the m groups

independently (i.e. with separate means and covariance matrices)

using the R package bayesm (Rossi, Allenby & McCulloch 2005),

just as we did for Case 1 in the calculation of SEAB except that

here we monitor the posterior means rather than the covariance

matrices R to locate the values that define the convex hull extremi-

ties. We use an uninformative prior for the means describing the

likely range of the d13C and d15N values taking a normal distribu-

tion with means = 0 and variances = 106. Additionally, a Wishart

prior is used for the covariance matrix with q = 2 and

V ¼ 2 0
0 2

! "
.We then draw 104 posterior samples using the R func-

tion rmultireg (Rossi, Allenby & McCulloch 2005) consistent with

our data and our specified priors. Together, posterior draws repre-

sent an estimate of the probability range of the population means

of each taxonomic ⁄ functional group based on the samples and the

priors. For illustrative purposes, the first 100 posterior draws are

shown (Fig. 5b) for a model fitted to the sample data depicted in

Fig. 5a. Also shown are the convex hulls calculated on the

first 10 posterior draws. All six of the existing metrics (Layman

et al. 2007a) are similarly calculated according to these posterior

estimates of the sample mean (all 104 of them), and their uncer-

tainty is naturally propagated through to the metrics (Fig. 6). With

the corresponding probability distributions for the metrics, it is

now possible to make statistical comparisons between communi-

ties.

Sensitivity to sample size

Simulation tests were run on 104 randomly created communities.

Communities comprised randomly between 3 and 10 members

(m), each of which had an independent location (randomly

between )20 and 0 on the d13C axis, and )5 and 10 on the d15N
axis) and shape in isotope space defined by a random covariance

matrix. Additionally, each community consisted of randomly

between 2 and 50 isotope samples (n) per member. The true pop-

ulation Layman metrics were calculated on the known popula-

tion means of each of the m community members. The estimated

values were calculated based on the Bayesian methodology

described earlier. The results of these simulations suggest that the

model’s estimate of the 95% credible interval for a given metric

contains the true population value on 94–95% of occasions. Fur-

thermore, there appears to be some sensitivity to sample size

(Fig. 7) for n < 10 such that small sample sizes typically result

in underestimation of the population TA. In contrast, variation

in the number of group members (m) in the community does not

generally result in systematic bias in the estimates of the metrics.

Similar trends are observed in all calculated metrics (see Fig. S3).

(a) (b)

Fig. 5. (a) Data sampled according to the methodologies in the text, withm = 8 groups comprising n = 5 samples each. The convex hull based
on the true population means is shown as the dashed line, while that based on the sample means is shown as the solid line. (b) Depicts 50 poster-
ior draws for the sample means fitted to the sample data in (a), and convex hulls based on the first 10 of these posterior draws.

(a) (b)

Fig. 6. Resultant uncertainty in the six Layman metrics arising from the simulated data depicted in Fig. 5a. As the scales differ greatly, the area
of the convex hull (TA) is shown in (a), whereas the other five metrics (NR = dN range; CR = dC_range) are shown in (b). Black dots repre-
sent theirmode, true population values as crosses and the shaded boxes representing the 50%, 75% and 95%credible intervals fromdark to light
grey.
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Discussion

The use of stable isotopes in ecological studies has increased

in recent years, and it is clear that some of the more complex

applications (Bearhop et al. 2004; Layman et al. 2007a;

Newsome et al. 2007) have the potential to revolutionize the

way in which we investigate questions relating to community

structure and niche occupancy. However, it is now clear that

there are several caveats associated with applying the point-

estimate versions of community and niche metrics that over-

look the inherent variability present in ecological systems.

Here, we have developed the original metrics proposed by

Layman et al. (2007a) using standard ellipses and Bayesian

methodology and demonstrate that these new approaches

overcome some of these caveats providing more robust and

honest descriptors of community structure.

In particular, the application of convex hull area to

describe isotopic niche width of community members should

be employedwith due caution given to sample sizes, as eluded

by Podani (2009). Comparisons between community mem-

bers comprising different sample sizes will be prone to bias in

the direction of larger convex hull area (TA) for the larger

sample sizes. This means that meta-analyses among studies

or systems are likely to be rendered statistically invalid.

Indeed, as they stand, the metrics of dC_range, dN_range

and TA described by Layman et al. (2007a) will all increase

towards some biologically and ecologically constrained max-

imum with sample size, that of CD will increase asymptoti-

cally and MNND and SDNND will both decrease with

sample size (Fig. S1). This trend is to be expected given that

estimating maximum and minimum values from a sample is

impossible, as the best estimate you have is the largest one

you have collected to date, and can only be improved by

obtaining a more extreme value in future samples. CD is a

measure of deviance from the centre of gravity of the data

cloud which will stabilize to the population value with

increasing sample size (Fig. S1). The metrics of MNND and

the associated standard deviation of nearest neighbour dis-

tance will fall to zero at an infinite density of sample data

points (Fig. S1). These general trends are not restricted to the

multivariate normal distribution we consider here, but will be

general features of any continuous random variates. Further-

more, the uncertainties in these metrics are inherently larger

for small sample sizes, and hence caution is to be urged when

looking for trends in data that is prone to unquantified error.

We propose the application of a measure of isotopic niche

width based on the SEA which, after application of a small

sample size correction, is shown to be insensitive to bias asso-

ciated with sample size. As far as we are aware, the use of

(n)2) on the denominator for bivariate data instead of the

standard (n)1) Bessel’s correction has not been suggested

before (Rocchi et al. 2005) in the context of estimating the

covariance matrix, and our simulations suggest that it pro-

duces an unbiased estimate of the standard ellipse and its

associatedmeasures such as SEA.

One approach to quantifying the isotopic d-space (New-

some et al. 2007) inhabited by data would be to estimate the

SEA using Bayesian inference as we describe (we provide

functions in R for this purpose). Qualitatively similar to

bootstrapping techniques, the Bayesian approach returns a

distribution (the posterior) representing estimates of SEA

that reflect uncertainty arising from the sampling process,

with larger uncertainty associated with smaller sample sizes.

In this manner, the resultant ellipses can be compared in a

quantitative manner and differences among samples stated

with reference to a robust probability associated with the dif-

ference. Additionally, other factors such as differences in the

distribution of the resource base in the lower trophic levels

with respect to a consumer are also likely to influence disper-

sion in d-space and hence potentially complicate comparisons

among communities (Hoeinghaus & Zeug 2008; Layman &

Post 2008), and more work is required to refine methods for

normalising across such communities such as implemented

byAraújo et al. (2007).

The issue of comparability also extends to the situation

where these metrics are applied to entire communities by tak-

ing the means of the community members. Uncertainty in the

means with small sample size creates similar issues of bias

and uncertainty that are currently ignored. Our Bayesian

implementation of these metrics results in improved esti-

mates of the community metrics, including their uncertainty

(Fig. 6). We recommend a minimum of 10 samples per group

member when describing the community in isotope-space to

mitigate against bias towards underestimating the popula-

tion value (Fig. 7).

In conclusion, the practice of using convex hull area to

describe the niche width of a single community member is

inappropriate, particularly should comparisons be drawn

between groups of different sample sizes, thereby hampering

meta-analyses and comparative studies. By assuming that the

data represent a sample from some underlying distribution

(currently assumed to be multivariate normal), we provide a

Fig. 7. Bias in the estimate of convex hull total area compared to the
true population value as a function of samples (n) per group. The
solid black line represents the mean of the individual simulations
across a given sample size (grey circles).
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Bayesian method for passing the uncertainty associated with

sampling on to generate robust measures of isotopic niche

width of both community members and entire communities.

We believe that these developments will allow ecologists to

ask increasingly complex and searching questions about key

factors driving community structure.
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Araújo, M., Bolnick, D., Machado, G., Giaretta, A. & dos Reis, S. (2007)
Using d13C stable isotopes to quantify individual-level diet variation.Oecolo-
gia, 152, 643–654.

Batschelet, E. (1981)Circular Statistics in Biology. Academic Press, London.
Bearhop, S., Adams, C.E., Waldron, S., Fuller, R.A. & Macleod, H. (2004)

Determining trophic niche width: a novel approach using stable isotope
analysis. Journal of Animal Ecology, 73, 1007–1012.

Bolnick, D.I., Svanback, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey,
C.D. & Forister, M.L. (2003) The ecology of individuals: incidence and
implications of individual specialization.AmericanNaturalist, 161, 1–28.

Chew, V. (1966) Confidence, prediction and tolerance regions for multivariate
normal distribution. Journal of the American Statistical Association, 61, 605–
617.

Chisholm, B.S., Nelson, D.E. & Schwarcz, H.P. (1982) Stable-carbon isotope
ratios as a measure of marine versus terrestrial protein in ancient diets.
Science, 216, 1131–1132.

Craig, H. (1953) The geochemistry of stable-carbon isotopes. Geochimica Et
Cosmochimica Acta, 3, 53–92.

Darimont, C.T., Paquet, P.C. & Reimchen, T.E. (2009) Landscape heterogene-
ity and marine subsidy generate extensive intrapopulation niche diversity in
a large terrestrial vertebrate. Journal of Animal Ecology, 78, 126–133.

Fry, B. (1988) Food web structure on Georges Bank from stable C, N, and S
isotopic compositions.Limnology and Oceanography, 33, 1182–1190.

Hoeinghaus, D.J. & Zeug, S.C. (2008) Can stable isotope ratios provide for
community-wide measures of trophic structure? Comment. Ecology, 89,
2353–2357.

Hoeinghaus,D.J.,Winemiller, K.O., Layman,C.A.,Arrington,D.A.& Jepsen,
D.B. (2006) Effects of seasonality and migratory prey on body condition of
Cichla species in a tropical floodplain river. Ecology of Freshwater Fish, 15,
398–407.

Hutchinson,G.E. (1957) Concluding remarks. InCold SpringHarbour sympo-
sium (edQ. Biology).

Hutchinson, G.E. (1978) An Introduction to Population Biology. Yale Univer-
sity Press, NewHaven.

Inger, R., Ruxton, G.D., Newton, J., Colhoun, K., Robinson, J.A., Jackson,
A.L. & Bearhop, S. (2006) Temporal and intrapopulation variation in prey
choice of wintering geese determined by stable isotope analysis. Journal of
Animal Ecology, 75, 1190–1200.

Inger, R., Gudmundsson, G.A., Ruxton, G.D., Newton, J., Colhoun, K., Auh-
age, S. & Bearhop, S. (2008) Habitat utilisation during staging affects body
condition in a long distancemigrant,Branta bernicla hrota: potential impacts
on fitness? Journal of Avian Biology, 39, 704–708.

Jackson, A.L., Inger, R., Bearhop, S. & Parnell, A. (2009) Erroneous behaviour
ofMixSIR, a recently published Bayesian isotopemixingmodel: a discussion
ofMoore &amp; Semmens (2008).Ecology Letters, 12, E1–E5.

Layman, C.A. & Post, D.M. (2008) Can stable isotope ratios provide for com-
munity-widemeasures of trophic structure? Reply.Ecology, 89, 2358–2359.

Layman, C.A., Arrington, D.A., Montana, C.G. & Post, D.M. (2007a) Can
stable isotope ratios provide for community-wide measures of trophic struc-
ture?Ecology, 88, 42–48.

Layman, C.A., Quattrochi, J.P., Peyer, C.M. & Allgeier, J.E. (2007b) Niche
width collapse in a resilient top predator following ecosystem fragmentation.
Ecology Letters, 10, 937–944.

Martı́nez del Rio, C., Sabat, P., Anderson-Sprecher, R. & Gonzalez, S.P.
(2009) Dietary and isotopic specialization: the isotopic niche of three Cincl-
odes ovenbirds.Oecologia, 161, 149–159.

McCarthy, M.A. (2007) Bayesian Methods for Ecology. Cambridge University
Press, Cambridge.

Minagawa, M. & Wada, E. (1984) Stepwise enrichment of 15N along food-
chains – further evidence and the relation between d15N and animal age.Geo-
chimica Et Cosmochimica Acta, 48, 1135–1140.

Newsome, S.D., Martı́nez del Rio, C., Bearhop, S. & Phillips, D.L. (2007) A
niche for isotopic ecology.Frontiers in Ecology and the Environment, 5, 429–436.

Olsson,K., Stenroth, P., Nystrom, P. &Graneli,W. (2009) Invasions and niche
width: does niche width of an introduced crayfish differ from a native cray-
fish? Freshwater Biology, 54, 1731–1740.

Parnell, A., Inger, R., Bearhop, S. & Jackson, A.L. (2008) SIAR: Stable isotope
analysis in R.

Parnell, A.C., Inger, R., Bearhop, S. & Jackson, A.L. (2010) Source partition-
ing using stable isotopes: coping with too much variation. PLoS ONE, 5,
e9672.

Podani, J. (2009) Convex hulls, habitat filtering, and functional diversity: math-
ematical elegance versus ecological interpretability. Community Ecology, 10,
244–250.
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Fig. S1. The effect of sample size on the 6 Layman metrics (Layman

et al. 2007a) when applied to a single population of bivariate isotope

data (case 1).

Fig. S2. Values drawn from the Wishart distribution with degrees of

freedom q=2and scalematrixV ¼ 2 0
0 2
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Fig. S3. Bias in the Bayesian estimate of each of the six layman

metrics when applied to an ecological community (Case 2 in the main

text) as a function of sample size (n).

As a service to our authors and readers, this journal provides

supporting information supplied by the authors. Such materials may

be re-organized for online delivery, but are not copy-edited or type-

set. Technical support issues arising from supporting information

(other thanmissing files) should be addressed to the authors.

8 A. L. Jackson et al.

! 2011 TheAuthors. Journal ofAnimal Ecology! 2011British Ecological Society, Journal of Animal Ecology


