Research Paper

An Examination of the Carbon Isotope Effects Associated with Amino Acid Biosynthesis

JAMES H. SCOTT,1 DIANE M. O’BRIEN,2 DAVID EMERSON,3 HENRY SUN,4 GENE D. MCDONALD,4 ANTONIO SALGADO,6 and MARILYN L. FOGEL7

ABSTRACT

Stable carbon isotope ratios ($\delta^{13}C$) were determined for alanine, proline, phenylalanine, valine, leucine, isoleucine, aspartate (aspartic acid and asparagine), glutamate (glutamic acid and glutamine), lysine, serine, glycine, and threonine from metabolically diverse microorganisms. The microorganisms examined included fermenting bacteria, organotrophic, chemolithotrophic, phototrophic, methylotrophic, methanogenic, acetogenic, acetotrophic, and naturally occurring endocryptolithic communities from the Dry Valleys of Antarctica. Here we demonstrated that reactions involved in amino acid biosynthesis can be used to distinguish amino acids formed by life from those formed by nonbiological processes. The unique patterns of $\delta^{13}C$ imprinted by life on amino acids produced a biological bias. We also showed that, by applying discriminant function analysis to the $\delta^{13}C$ value of a pool of amino acids formed by biological activity, it was possible to identify key aspects of intermediary carbon metabolism in the microbial world. In fact, microorganisms examined in this study could be placed within one of three metabolic groups: (1) heterotrophs that grow by oxidizing compounds containing three or more carbon-to-carbon bonds (fermenters and organotrophs), (2) autotrophs that grow by taking up carbon dioxide (chemolithotrophs and phototrophs), and (3) acetoclastic microbes that grow by assimilation of formaldehyde or acetate (methylotrophs, methanogens, acetogens, and acetotrophs). Furthermore, we demonstrated that endocryptolithic communities from Antarctica grouped most closely with the autotrophs, which indicates that the dominant metabolic pathways in these communities are likely those utilized for CO_2 fixation. We propose that this technique can be used to determine the dominant metabolic types in a community and reveal the overall flow of carbon in a complex ecosystem. Key Words: Amino acids—Stable carbon isotope ratio—Isotopic-ratio gas chromatography mass spectrometry—CO_2 fixation. Astrobiology 6, xxx–xxx.

1Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire.
2Department of Biological Sciences, University of Alaska, Fairbanks, Alaska.
3American Type Culture Collection, Manassas, Virginia.
4Desert Research Institute, Las Vegas, Nevada.
5Department of Chemistry & Biochemistry, University of Texas, Austin, Texas.
6Laboratory of Organic Chemistry, University of Athens, Panepistimiopolis, Athens, Greece.
7Geophysical Laboratory, Carnegie Institution of Washington, Washington, District of Columbia.
INTRODUCTION

One of the effects of biological activity is to alter and rearrange the stable carbon isotope composition (δ13C) of an environment. How biology alters an environment has become a way for scientists to identify and quantify the impact of life on the planet (Schidlowski et al., 1983; Schidlowski, 2001). Insight into many elemental cycles on the planet has been garnered by examining the bulk changes in carbon, nitrogen, sulfur, hydrogen, and oxygen isotopes in response to biology. Advancements in the 1960s (Abelson and Hoering, 1961) increased the efficiency of examining the stable carbon isotope composition of individual amino acids. Abelson and Hoering (1961) showed that this chromatographic approach provided a more rapid and powerful way to examine the biochemistry of life and the different ways in which life impacts the environment. Specifically, they demonstrated that individual amino acids formed by biology had significant variations in their δ13C. These variations or isotope anomalies were shown to be associated with metabolism being carried out by life. Thus, it is easy to understand the analytical power of amino acid specific stable isotope ratio analysis. Since amino acid biosynthesis is a ubiquitous process for biology, specific stable isotope ratio analysis of amino acids holds enormous promise as an approach for delineating life from abiotic processes and examining the subtle differences between the biosynthetic pathways exploited by life.

Life has evolved a great deal of flexibility with regard to what can be used as a source of food. This flexibility is due in large part to the myriad of ways life has devised with which to assimilate carbon for growth. The metabolic flexibility we observe is due in large part to the adaptability of the citric acid cycle (CAC), also known as the tricarboxylic acid or Krebs cycle (Gest, 1987; Huynen et al., 1999).

To date, every cell characterized utilizes some portion of the CAC. Despite its ubiquity, however, few microorganisms utilize a complete battery of CAC enzymes (Huynen et al., 1999). The reactions of the CAC that have been demonstrated to be well conserved are those that are essential for the maintenance of oxaloacetate, pyruvate, and α-ketoglutarate pools (Kornberg and Quayle, 1958; Kornberg, 1970). The maintenance of cellular pools of oxaloacetate, pyruvate, and α-ketoglutarate is essential for the biosynthesis of all amino acids. Therefore, the defining feature of metabolic diversity is how a range of carbon assimilation pathways can be utilized while still satisfying this fundamental biochemical requirement for growth by adapting the CAC. Compound-specific stable isotope analysis of amino acids provides a straightforward analytical approach to examine life’s metabolic diversity in the world by tracking the isotopic change in the pools of oxaloacetate, pyruvate, and α-ketoglutarate. Therefore, such an approach makes it possible to tie variations in intermediary carbon metabolism in biological communities back to biogeochemical phenomena. The examination of carbon isotope anomalies in individual amino acids has been utilized as a tracer of physiological, environmental, ecological, and archaeological phenomena (Sarbu et al., 1996; Abraham et al., 1998; Pelz et al., 1998; Boschker et al., 1999; Pancost et al., 2000, 2001; Zhang et al., 2005). It has allowed for the examination and comparison of the dietary practices of modern and ancient humans (Fogel et al., 1997; Fogel and Tuross, 2003). It has also been utilized to examine the allocation of nutritional resources in insect reproduction (O’Brien et al., 2002) and document climatic changes over time in various regions of the world (Johnson et al., 1997, 1998).

While amino acids are ubiquitous in extant life, it has been shown that certain amino acids commonly formed by life (i.e., glycine, alanine, aspartic acid, and glutamic acid) are also formed by nonbiological processes (Miller, 1953; Yuen et al., 1984; Haberstroh and Karl, 1989; Hennet et al., 1992; Marshall, 1994; Amend and Shock, 1998; Bada and Lazcano, 2002; Bernstein et al., 2002; Muñoz Caro et al., 2002; Shock, 2002). An important illustration of this phenomenon has been observed in meteoritic samples examined to date (Kvenvolden et al., 1970, 1971; Epstein et al., 1987; Engel et al., 1990; Bada et al., 1998; Glavin et al., 1999). It is clear that amino acids can be formed abiotically under the conditions meteorites encounter before they enter the planets influence (Yuen et al., 1984; Bernstein et al., 2002; Muñoz Caro et al., 2002). We propose that biochemical pathways imprint a carbon isotopic pattern that allows amino acids formed by life to be readily distinguished from those formed by nonbiological processes.
Materials and Methods

Description of microbial samples

Microorganisms examined in this study were obtained from the American Type Culture Collection (Table 1). The strains utilized were cultivated as previously described (http://wwatcc.org/) unless otherwise noted. The complex microbial communities studied were isolated from the Dry Valley of Antarctica. The mineralogy, sampling, and storage of the Antarctic sandstone communities and lichens examined in this study have been previously described (Friedmann et al., 1993; Sun and Friedmann, 2003).

Preparation of samples

Dried cellular material (1-3 mg) was hydrolyzed in 1 ml of 6.0 N hydrochloric acid at 110°C for 20 h. After the sample was carefully dried under a stream of dinitrogen gas, the hydrolyzate was derivatized with acidified isopropanol followed by esterification with trifluoroacetic acid anhydride, following a previously described method (Silfer et al., 1991). The resulting mixture of derivatized amino acids was diluted in 200 µl of dichloromethane for subsequent analysis. All Antarctic rock extracts were initially extracted from the rock in nanopure water at 100°C for 24 h. After extraction, the amino acids extracted from enriched samples were derivatized and prepared as described above.

Gas chromatography-isotope ratio mass spectrometry analysis

Stable carbon isotope data are presented using the standard convention \(\delta^{13}C = [R_{\text{sample}} / R_{\text{standard}} - 1] \times 10^3 \), where \(R \) is the \(^{13}C/^ {12}C \) ratio of the sample and standard, respectively. Stable carbon isotope values are reported relative to the Pee Dee Belemnite standard. Derivatized amino acids were injected on a split-splitless injector (1:10 split) at 220°C and separated on a 50-m HP Ultra-1 column in a Varian model 3400 gas chromatograph (Hewlett Packard, Palo Alto, CA). The resolved amino acids were then combusted individually in a Finnigan GC continuous flow interface (Thermo Electron Corp., Waltham, MA) at 940°C and then measured as CO₂ on a Delta XL Plus isotope ratio mass spectrometer (Thermo Electron Corp.). Samples were run in triplicate, unless noted (Table 1), along with standards of known isotopic composition. The \(\delta^{13}C \) (%o) values of samples were corrected and calculated by using the measurements of known standards as previously described (Fogel and Tuross, 2003). The analytical error in measuring the derivatized amino acids was typically ±0.4‰. Errors in the standards used to correct for the carbon added during derivatization were approximately ±0.3‰. Standard deviations of corrected \(\delta^{13}C \) values for all variance in sample and standard preparation and the correction for the addition of C from the derivatization step were 1.5 ± 0.9‰. For interpretation, amino acids with \(\delta^{13}C \) values within 1.5‰ of each other have statistically similar values.

Data analysis

To determine whether there were any strong statistical relationships in the \(\delta^{13}C \) measured for amino acids that share common intermediates and carbon backbones (Fig. 1) and are interconnected by intermediary carbon metabolism (Fig. 1), the \(\delta^{13}C \) values of amino acids (Table 2) were characterized by least squares linear regression. In each case and for consistency, the \(\delta^{13}C \) of the precursor amino acid was designated as the independent variable (X), and the \(\delta^{13}C \) of the downstream amino acid was designated the dependent variable (Y). We used the 95% confidence estimates of the slopes to determine whether they differed significantly from 1:1. Residuals were tested for normality using Shapiro-Wilks algorithm; in all cases they satisfied the assumptions of parametric analysis.

The \(\delta^{13}C \) values of amino acids from various cultured microorganisms were compared and contrasted utilizing discriminant function analysis (DFA). DFA allowed us to determine whether a set of individual \(\delta^{13}C \) values of amino acids from representative microorganisms could be used to place various microorganisms into groups defined using a priori metabolic characteristics. Three groups were identified, and variations between groups were compared to evaluate whether the data significantly discern similarities or differences among these predefined groups. DFA analysis allowed us to define a statistical plane, where the characteristics and differences between various sets of \(\delta^{13}C \) values of amino acids could be visualized statistically and graphically in two dimensions utilizing JMP version 5.0 (SAS Institute, Cary, NC).
<table>
<thead>
<tr>
<th>Organism</th>
<th>Kingdom</th>
<th>Metabolic pathway</th>
<th>ATCC designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desulfotomaculum acetoxidans</td>
<td>Bacteria</td>
<td>Oxidative acetyl coenzyme A pathway</td>
<td>Acetotroph</td>
</tr>
<tr>
<td>Methanobacterium formicicum</td>
<td>Archaea</td>
<td>Reductive acetyl coenzyme A pathway</td>
<td>Methanogen</td>
</tr>
<tr>
<td>Methanosarcina acetivorans</td>
<td>Archaea</td>
<td>Reductive acetyl coenzyme A pathway</td>
<td>Methanogen</td>
</tr>
<tr>
<td>Moorella thermaacetica</td>
<td>Bacteria</td>
<td>Reductive acetyl coenzyme A pathway</td>
<td>Acetogen</td>
</tr>
<tr>
<td>Aquifex pyrophilus</td>
<td>Bacteria</td>
<td>Reductive TCA pathway</td>
<td>Chemolithotroph</td>
</tr>
<tr>
<td>Chlorobium tepidum</td>
<td>Bacteria</td>
<td>Reductive TCA pathway</td>
<td>Photothroph</td>
</tr>
<tr>
<td>Spirulina platensis</td>
<td>Bacteria</td>
<td>Ribulose bisphosphate pathway</td>
<td>Photothroph</td>
</tr>
<tr>
<td>Synechocystis sp.</td>
<td>Bacteria</td>
<td>Ribulose bisphosphate pathway</td>
<td>Photothroph</td>
</tr>
<tr>
<td>Nitrosomonas europaea</td>
<td>Bacteria</td>
<td>Ribulose bisphosphate pathway</td>
<td>Chemolithotroph</td>
</tr>
<tr>
<td>Winogradsky</td>
<td>Unknown</td>
<td>Metabolic consortia</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Methylphilus methylotrophus</td>
<td>Bacteria</td>
<td>Serine pathway</td>
<td>Methylotroph</td>
</tr>
<tr>
<td>Methylobacterium extorquens</td>
<td>Bacteria</td>
<td>Serine pathway</td>
<td>Methylotroph</td>
</tr>
<tr>
<td>Thermococcus celer</td>
<td>Archaea</td>
<td>TCA cycle</td>
<td>Organotroph</td>
</tr>
<tr>
<td>Pyrococcus furiosus</td>
<td>Archaea</td>
<td>TCA cycle</td>
<td>Organotroph</td>
</tr>
<tr>
<td>Thermotoga maritima</td>
<td>Bacteria</td>
<td>TCA cycle</td>
<td>Organotroph</td>
</tr>
<tr>
<td>Desulfovibrio africanus</td>
<td>Bacteria</td>
<td>TCA cycle</td>
<td>Organotroph</td>
</tr>
<tr>
<td>Clostridium beijerinckii</td>
<td>Bacteria</td>
<td>TCA cycle</td>
<td>Fermenter</td>
</tr>
<tr>
<td>Clostridium acetobutylicum</td>
<td>Bacteria</td>
<td>TCA cycle</td>
<td>Fermenter</td>
</tr>
<tr>
<td>Escherichia coli K12</td>
<td>Bacteria</td>
<td>TCA cycle/glyoxylate shunt</td>
<td>Organotroph/acetotroph</td>
</tr>
<tr>
<td>Sulfolobus solfataricus</td>
<td>Archaea</td>
<td>TCA cycle/glyoxylate shunt/ reductive TCA cycle</td>
<td>Organotroph</td>
</tr>
<tr>
<td>Shewanella oneidensis MR1</td>
<td>Bacteria</td>
<td>TCA cycle/glyoxylate shunt/ serine pathway</td>
<td>Organotroph/acetotroph/methylotroph</td>
</tr>
<tr>
<td>Sandstone community</td>
<td>Polyphylegentic</td>
<td>Unknown</td>
<td>Metabolic consortia</td>
</tr>
<tr>
<td>Isolated lichen community</td>
<td>Polyphylegentic</td>
<td>Unknown</td>
<td>Metabolic consortia</td>
</tr>
</tbody>
</table>

TCA, tricarboxylic acid.
RESULTS

Amino acids connected through intermediary metabolism and CAC reactions

Here, it should be noted that, because of the process utilized for hydrolysis, it is impossible to distinguish between glutamic acid and glutamine, as well as aspartic acid and asparagine. In both instances, therefore, we refer to the total pools of glutamic acid and glutamine as glutamate, and of aspartic acid and asparagine as aspartate.

Biology forms aspartate and alanine by adding an amine group to oxaloacetate and pyruvate, respectively (Fig. 1). This process of nitrogen assimilation is referred to as transamination. It has been shown that, during transamination, a major shift in the δ^{15}N occurs (Macko et al., 1987). During this process, however, no significant shift in δ^{13}C is observed. This is because the significant carbon isotope effects during amino acid biosynthesis occur during reaction steps where carbon-carbon bonds are formed (carboxylation) and broken (decarboxylation) (Hayes, 2001). Therefore, it is valid to treat aspartate and alanine as carbon isotope proxies for oxaloacetate and pyruvate.

When the δ^{13}C values of aspartate and alanine, formed by a representative group of microorganisms, were compared and contrasted utilizing least square linear regression analysis, we found a strong linear correlation: $Y = (0.90)X + (-2.6)$, with r^2 of 0.95. The strong linear correlation is a consequence of well-conserved anapleurotic pathways that link the replenishment of oxaloacetate pools to the replenishment of pyruvate pools.

Glutamate is formed by the transamination of α-ketoglutarate. Utilizing the same rationale as previously discussed, we were able to consider glutamate an isotopic proxy of α-ketoglutarate (Fig. 1). When the δ^{13}C values of aspartate and glutamate from individual microorganisms were examined, a strong linear correlation was observed: $Y = (1.01)X + (-1.8)$, with r^2 of 0.88. The strong linear relationship between glutamate and aspartate is a consequence of α-ketoglutarate and oxaloacetate being linked in all cells through well-conserved reactions of the CAC.

Pyruvate and 3-phosphoglycerate are two of the most important carbon intermediates in the carbon metabolism of every cell. Also, pyruvate and 3-phosphoglycerate are connected through reactions that link carbohydrate metabolism and the CAC (Fig. 1). Serine is formed from the transamination of 3-phosphoglycerate. Therefore, serine can be viewed as a carbon isotopic proxy for 3-phosphoglycerate. When the δ^{13}C values of biologically formed serine and alanine were compared and contrasted, we observed a linear correlation defined as a line represented by the equation $Y = (1.17)X + (4.8)$, with r^2 of 0.74. The linear
<table>
<thead>
<tr>
<th>Organism</th>
<th>Ala</th>
<th>Gly</th>
<th>Thr</th>
<th>Ser</th>
<th>Val</th>
<th>Leu</th>
<th>Ileu</th>
<th>Pro</th>
<th>Asp</th>
<th>Glu</th>
<th>Phe</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td></td>
</tr>
<tr>
<td>Aerobic (pyruvate)</td>
<td>−4.08</td>
<td>5.67</td>
<td>−5.38</td>
<td>7.09</td>
<td>−12.41</td>
<td>−11.94</td>
<td>−11.58</td>
<td>−6.76</td>
<td>−3.52</td>
<td>−0.30</td>
<td>−10.65</td>
<td>−8.13</td>
</tr>
<tr>
<td>Anaerobic (pyruvate)</td>
<td>−4.81</td>
<td>11.25</td>
<td>−13.62</td>
<td>0.76</td>
<td>−11.99</td>
<td>−16.59</td>
<td>−15.23</td>
<td>−10.46</td>
<td>−7.38</td>
<td>−7.80</td>
<td>−19.42</td>
<td>−10.65</td>
</tr>
<tr>
<td>Acetate</td>
<td>−29.80</td>
<td>−16.42</td>
<td>−30.57</td>
<td>−18.02</td>
<td>−34.61</td>
<td>−32.34</td>
<td>−32.39</td>
<td>−25.19</td>
<td>−27.35</td>
<td>−21.25</td>
<td>−34.45</td>
<td>−24.11</td>
</tr>
<tr>
<td>S. oneidensis</td>
<td></td>
</tr>
<tr>
<td>Aerobe (nitrate)</td>
<td>−24.13</td>
<td>−17.39</td>
<td>−25.64</td>
<td>−10.73</td>
<td>−34.95</td>
<td>−30.25</td>
<td>−28.68</td>
<td>−24.01</td>
<td>−25.98</td>
<td>−23.18</td>
<td>−30.75</td>
<td>−26.65</td>
</tr>
<tr>
<td>Anaerobe (fumarate)</td>
<td>−23.36</td>
<td>−15.21</td>
<td>−27.33</td>
<td>−10.36</td>
<td>−32.85</td>
<td>−34.94</td>
<td>−28.96</td>
<td>−33.07</td>
<td>−25.80</td>
<td>−31.78</td>
<td>−30.02</td>
<td>−28.73</td>
</tr>
<tr>
<td>Anaerobe (nitrate)</td>
<td>−24.55</td>
<td>−19.15</td>
<td>−27.85</td>
<td>−4.50</td>
<td>−33.52</td>
<td>−35.88</td>
<td>−28.34</td>
<td>−28.15</td>
<td>−26.72</td>
<td>−29.89</td>
<td>−31.65</td>
<td>−27.47</td>
</tr>
<tr>
<td>Desulfocatrlia</td>
<td>−20.00</td>
<td>−6.28</td>
<td>−15.33</td>
<td>−21.82</td>
<td>−26.53</td>
<td>−29.86</td>
<td>−25.52</td>
<td>−27.94</td>
<td>−17.06</td>
<td>−25.28</td>
<td>−24.77</td>
<td>−20.68</td>
</tr>
<tr>
<td>Methylophilus</td>
<td>−53.18</td>
<td>−41.66</td>
<td>−53.70</td>
<td>−57.64</td>
<td>−58.63</td>
<td>−59.12</td>
<td>−60.08</td>
<td>−55.73</td>
<td>−48.08</td>
<td>−54.84</td>
<td>−59.02</td>
<td>−51.30</td>
</tr>
<tr>
<td>Methylobacterium</td>
<td></td>
</tr>
<tr>
<td>Methylyamine</td>
<td>−42.38</td>
<td>−30.25</td>
<td>−44.40</td>
<td>−51.51</td>
<td>−47.96</td>
<td>−48.07</td>
<td>−48.02</td>
<td>−42.02</td>
<td>−40.63</td>
<td>−39.95</td>
<td>−51.15</td>
<td>−37.64</td>
</tr>
<tr>
<td>Methanol</td>
<td>−43.37</td>
<td>−35.69</td>
<td>−39.77</td>
<td>−55.11</td>
<td>−51.74</td>
<td>−45.86</td>
<td>−43.38</td>
<td>−41.36</td>
<td>−39.57</td>
<td>−40.37</td>
<td>−47.16</td>
<td>−38.39</td>
</tr>
<tr>
<td>Methanosarcina</td>
<td>−29.04</td>
<td>−23.39</td>
<td>−21.77</td>
<td>−30.00</td>
<td>−37.43</td>
<td>−33.59</td>
<td>−34.92</td>
<td>−28.02</td>
<td>−22.40</td>
<td>−29.78</td>
<td>−29.84</td>
<td>−29.56</td>
</tr>
<tr>
<td>Methanobacterium</td>
<td>−12.82</td>
<td>−2.06</td>
<td>−6.60</td>
<td>−4.57</td>
<td>−27.57</td>
<td>−29.55</td>
<td>−27.85</td>
<td>−8.11</td>
<td>−7.79</td>
<td>−4.34</td>
<td>−20.59</td>
<td>−12.36</td>
</tr>
<tr>
<td>Aquifex</td>
<td>−23.27</td>
<td>−12.92</td>
<td>−36.42</td>
<td>−26.74</td>
<td>−38.01</td>
<td>−30.83</td>
<td>−32.25</td>
<td>−29.03</td>
<td>−25.89</td>
<td>−27.98</td>
<td>−30.31</td>
<td>−28.81</td>
</tr>
<tr>
<td>Thermococcus</td>
<td>−1.09</td>
<td>−2.46</td>
<td>−12.3</td>
<td>−23.23</td>
<td>−26.88</td>
<td>−28.53</td>
<td>−16.18</td>
<td>−15.38</td>
<td>−11.04</td>
<td>−24.54</td>
<td>−21.36</td>
<td></td>
</tr>
<tr>
<td>Sulfoalbus</td>
<td>−15.69</td>
<td>−9.95</td>
<td>−15.34</td>
<td>−26.26</td>
<td>−30.09</td>
<td>−31.7</td>
<td>−25.54</td>
<td>−21.35</td>
<td>−22.64</td>
<td>−21.52</td>
<td>−27.79</td>
<td>−23.53</td>
</tr>
<tr>
<td>Thermotoga</td>
<td>−14.31</td>
<td>−6.04</td>
<td>−13.38</td>
<td>−19.51</td>
<td>−22.54</td>
<td>−26.89</td>
<td>−23.73</td>
<td>−18.71</td>
<td>−16.82</td>
<td>−21.67</td>
<td>−27.57</td>
<td>−20.16</td>
</tr>
<tr>
<td>Desulfonomadum</td>
<td>−25.25</td>
<td>−17.27</td>
<td>−24.11</td>
<td>−18.88</td>
<td>−29.19</td>
<td>−29.42</td>
<td>−28.22</td>
<td>−23.91</td>
<td>−23.50</td>
<td>−25.70</td>
<td>−27.64</td>
<td>−23.25</td>
</tr>
<tr>
<td>C. beijerinckii</td>
<td>−18.23</td>
<td>−7.28</td>
<td>−15.99</td>
<td>−11.21</td>
<td>−29.77</td>
<td>−30.78</td>
<td>−28.29</td>
<td>−20.47</td>
<td>−18.49</td>
<td>−20.03</td>
<td>−26.76</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrosomonas</td>
<td>−52.72</td>
<td>−25.75</td>
<td>−63.19</td>
<td>−61.58</td>
<td>−69.72</td>
<td>−70.47</td>
<td>−64.44</td>
<td>−64.31</td>
<td>−54.18</td>
<td>−60.93</td>
<td>−73.53</td>
<td>ND</td>
</tr>
<tr>
<td>Moorella</td>
<td>−28.36</td>
<td>−32.78</td>
<td>−25.7</td>
<td>−33.24</td>
<td>−29.43</td>
<td>−27.32</td>
<td>−22.71</td>
<td>−24.41</td>
<td>−28.1</td>
<td>−28.68</td>
<td>−28.93</td>
<td>ND</td>
</tr>
<tr>
<td>Sandstone (Antarctic) community</td>
<td></td>
</tr>
<tr>
<td>Exterior</td>
<td>−22.27</td>
<td>−3.87</td>
<td>−30.14</td>
<td>−38.61</td>
<td>−36.22</td>
<td>−37.92</td>
<td>−26.43</td>
<td>−26.24</td>
<td>−23.25</td>
<td>−23.25</td>
<td>−32.49</td>
<td>ND</td>
</tr>
<tr>
<td>Interior</td>
<td>−22.68</td>
<td>−6.72</td>
<td>−22.05</td>
<td>−19.73</td>
<td>−46.45</td>
<td>−33.04</td>
<td>−22.63</td>
<td>−24.36</td>
<td>−25.49</td>
<td>−24.8</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Lichens (Antarctic) community</td>
<td>−18.12</td>
<td>0.32</td>
<td>−16.31</td>
<td>−8.56</td>
<td>−30.47</td>
<td>−35.87</td>
<td>−23.36</td>
<td>−24.27</td>
<td>−18.49</td>
<td>−22.29</td>
<td>29.5</td>
<td>−27.23</td>
</tr>
<tr>
<td>Chlorobium</td>
<td>−4.48</td>
<td>−1.06</td>
<td>−1.16</td>
<td>−2.52</td>
<td>−17.15</td>
<td>−13.4</td>
<td>11.61</td>
<td>−10.71</td>
<td>−5.96</td>
<td>−13.31</td>
<td>−17.04</td>
<td>ND</td>
</tr>
<tr>
<td>Synechocystis</td>
<td>−13.06</td>
<td>−4.61</td>
<td>−11.04</td>
<td>ND</td>
<td>−25.68</td>
<td>−28.25</td>
<td>19.44</td>
<td>−14.5</td>
<td>−11.84</td>
<td>−19.51</td>
<td>−23.02</td>
<td>ND</td>
</tr>
<tr>
<td>Spirulina</td>
<td>−5.88</td>
<td>4.57</td>
<td>−6.15</td>
<td>−3.88</td>
<td>−18.76</td>
<td>−24.18</td>
<td>−17.06</td>
<td>−12.84</td>
<td>−7.82</td>
<td>−21.43</td>
<td>−20.76</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 2. Stable Carbon Isotope Ratio of Amino Acids Associated with the Microorganisms in This Study

Ala, alanine; Gly, glycine; Thr, threonine; Ser, serine; Val, valine; Leu, leucine; Ileu, isoleucine; Pro, proline; Asp, aspartate; Glu, glutamic acid; Phe, phenylalanine; Lys, lysine; ND, not detected.
correlation between serine and alanine is not as strong as previous examples. This, however, is consistent with what is known about the reactions that link carbohydrate metabolism and the CAC. Significant variation exists in the enzyme reactions and pathways that connect carbohydrate metabolism to the entrance to the CAC. For example, depending on the carbon substrate being used, either the cell will need to breakdown complex carbohydrates (or sugars) to pyruvate, or it will take pyruvate and form sugar through gluconeogenesis (Kornberg and Quayle, 1958; Kornberg, 1970; Gest, 1987). Because of this, there is more variation in what carbon bonds are broken and formed than in the previous linkage we have observed. So while there is a linear correlation between the $\delta^{13}C$ of serine and alanine, it is not surprising in retrospect that it is not as strong as for alanine and aspartic acid or glutamic acid or aspartic acid. This is an indication that the enzymatic and chemical linkages between carbohydrate metabolism and the CAC have more diversity and variation than they do between the CAC and anapleurotic pathways. Despite this fact, however, biology still places a stable carbon isotope imprint on alanine and serine it forms.

Can the analysis of amino acids with DFA provide insight into the patterns of intermediary metabolism?

Three distinct a priori groups defined on the basis of their ability to assimilate and utilize carbon nutrients were selected to determine whether there were any patterns of intermediary carbon metabolism that could be elucidated from the $\delta^{13}C$ values of the amino acids characterized in this study. Typically, DFA is exploited as an a priori analytical approach to ascertain whether groups of data sets can be related by a set of predictors. The mathematical and statistical foundation of DFA consists of finding a functional transformation that gives the maximum ratio of difference between a set of group multivariate means and the multivariate variance within two groups (Davis, 1986). Accordingly, an attempt is made to delineate based upon maximization between varying groups, while simultaneously maximizing within group variance. The predictors characteristics, in this case the $\delta^{13}C$ values of nine amino acids, are related to form groups based upon metabolic similarities of nine-dimensional space, which are then compared with groups that are input by the user as a priori knowledge of carbon utilization by microorganisms. DFA enabled us to test the validity of our metabolic groups based on the $\delta^{13}C$ values of the amino acids noted above.

DFA can be viewed as the opposite of multiple analysis of covariance (MANCOVA). MANCOVA is used to determine the effect on multiple dependents of a single categorical independent, while DFA analysis is utilized to see the effect on a categorical dependent of multiple interval independents. DFA differs from cluster analysis in that, in DFA, the groups are determined beforehand and the object is to determine the linear combination of independent variables that best discriminates among groups. In cluster analysis, the groups are not predetermined, and, in fact, the object is to determine in which cases groups may be clustered (Davis, 1986; Puroit and Rocke, 2003; Dworzanski et al., 2004; Tsai et al., 2005). Conversely, DFA has two steps: (1) an F test or Wilks-lambda is used to test whether the discriminant model as a whole is significant (Tables 3 and 4), and (2) whether the F test shows significance. Then the individual independent variables are assessed to see which ones differ significantly in mean by group, and these are used to classify the dependent variable. The independent variables or predictors in this case are the individual $\delta^{13}C$ for alanine, proline, glutamate, aspartate, valine, leucine, isoleucine, threonine, and glycine from heterotrophs, including fermentative anaerobes, methylotrophs, methanogens, acetogens, chemolithoautotrophs, and phototrophs. The Wilks-lambda is used in an analysis of variance (F) test of mean differences in discriminant analysis, such that the smaller the lambda for an independent variable, the more that variable contributes to the DFA. The F test of Wilks-lambda shows which variable’s contributions are significant. Wilks-lambda is sometimes called the U statistic. More relevant to this study is the finding that the Wilks-lambda can also be used in a second context to test the statistical significance of the DFA model as a whole.

Our analysis indicates that the DFA model that relied on (1) heterotrophs, which included the fermenters and organotrophs, (2) autotrophs, which included the chemolithotrophs and phototrophs, and (3) acetoclastic microbes, which included the methylotrophs, methanogens, acetogens, and acetotrophs as a priori descriptions of metabolic groups was well described by the $\delta^{13}C$ values of the nine amino acids in our study (Fig. 2).
TABLE 3. RESULTS OF LINEAR REGRESSION ANALYSIS BETWEEN AMINO ACID PRECURSORS AND PRODUCTS

<table>
<thead>
<tr>
<th>Y (dependent)</th>
<th>X (independent)</th>
<th>Number</th>
<th>r^2</th>
<th>Intercept</th>
<th>Slope</th>
<th>Slope 95% confidence interval</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspartate (Asx)</td>
<td>Alanine (Ala)</td>
<td>29</td>
<td>0.95</td>
<td>-2.64</td>
<td>0.90</td>
<td>0.084</td>
<td><0.0001</td>
</tr>
<tr>
<td>Threonine (Thr)</td>
<td>Aspartate (Asx)</td>
<td>29</td>
<td>0.93</td>
<td>-2.73</td>
<td>1.15</td>
<td>0.123</td>
<td><0.0001</td>
</tr>
<tr>
<td>Lysine (Lys)</td>
<td>Aspartate (Asx)</td>
<td>22</td>
<td>0.89</td>
<td>-7.71</td>
<td>0.80</td>
<td>0.129</td>
<td><0.0001</td>
</tr>
<tr>
<td>Proline (Pro)</td>
<td>Glutamate (Glx)</td>
<td>29</td>
<td>0.94</td>
<td>-1.65</td>
<td>0.96</td>
<td>0.099</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serine (Ser)</td>
<td>Glycine (Gly)</td>
<td>28</td>
<td>0.59</td>
<td>-0.49</td>
<td>0.55</td>
<td>0.362</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serine (Ser)</td>
<td>Alanine (Ala)</td>
<td>28</td>
<td>0.74</td>
<td>4.81</td>
<td>1.17</td>
<td>0.274</td>
<td><0.0001</td>
</tr>
<tr>
<td>Glutamate (Glx)</td>
<td>Aspartate (Asx)</td>
<td>29</td>
<td>0.88</td>
<td>-1.75</td>
<td>1.01</td>
<td>0.283</td>
<td><0.0001</td>
</tr>
<tr>
<td>Valine (Val)</td>
<td>Alanine (Ala)</td>
<td>29</td>
<td>0.86</td>
<td>-13.05</td>
<td>0.90</td>
<td>0.142</td>
<td><0.0001</td>
</tr>
<tr>
<td>Leucine (Leu)</td>
<td>Alanine (Ala)</td>
<td>29</td>
<td>0.82</td>
<td>-14.72</td>
<td>0.82</td>
<td>0.151</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

*aAll slopes except threonine versus aspartate and serine versus glycine were within one confidence interval of 1.0.

*bAlthough aspartate is not synthesized from alanine, the metabolic intermediate from which alanine is synthesized (pyruvate) supplies carbon skeletons for the intermediate from which aspartate is synthesized (oxaloacetate), via anaplerotic pathways (phosphoenolpyruvate carboxylase and pyruvate carboxylase).

*cAlthough glutamate does not share a common biosynthetic pathway with aspartate, the intermediates that both are directly formed from (α-ketoglutarate and oxaloacetate) are connected by common portions of the tricarboxylic acid cycle in all cells.

Isotopic relationship between amino acids that share common carbon intermediates

The δ13C of amino acids formed from α-ketoglutarate have a strong statistical correlation due to a shared carbon backbone (Table 3). Proline shares a common five-carbon backbone with glutamic acid and glutamine. We were able to determine the δ13C for both proline and glutamate in 29 microbial samples (Table 2). The δ13C of the proline examined in our study ranged from −6.8‰ to −64.3‰, with a mean of −24.9 ± 13.0‰, while the δ13C of the glutamate pool ranged from −0.3‰ to −60.9‰, with a mean of −24.2 ± 13.1‰. When the δ13C values of proline and glutamate from individual microorganisms were treated as individual points and analyzed utilizing least square linear regression analysis, a strong linear relationship was observed as a line represented by the equation $Y = (0.96)X + (-1.65)$ with a correlation of confidence (r^2) of 0.94.

The δ13C values of amino acids formed from oxaloacetate have a strong statistical correlation due to a shared carbon backbone (Table 3). Threonine shares a common four-carbon backbone with aspartic acid and asparagine. We were able to determine the δ13C for both threonine and aspartate in 29 samples (Table 2). The δ13C of threonine examined in our study ranged from −12.2‰ to −63.2‰, with a mean of −22.7 ± 14.4‰, while the aspartate pool ranged from −3.5‰ to −54.2‰ with a mean of −22.1 ± 12.1‰. The δ13C of threonine in comparison with that of aspartate from individual microorganisms showed a strong linear relationship represented by the equation $Y = (0.93)X + (-2.73)$ with an r^2 of 0.93.

While both lysine and isoleucine have more than four carbons in their backbone, they still share oxaloacetate as their common metabolic intermediate with aspartate. The δ13C for lysine was determined in 22 microbial samples, and the δ13C for isoleucine was determined in 29 samples. The δ13C values of lysine ranged from −8.1‰ to −51.3‰, with a mean of −24.9‰ ± 9.4‰. The δ13C of isoleucine examined in our study ranged from −11.6‰ to −64.4‰ with a mean of −28.9‰ ± 12.1‰. When the δ13C values of lysine and aspartate were plotted relative to each other, a linear relationship represented by the equation $Y = (0.80)X + (-7.71)$ with an r^2 of 0.89 was determined. When we compared the δ13C of isoleucine and aspartate by a similar approach,

TABLE 4. RESULTS OF WILKS TEST FOR ANALYSIS IN TABLE 3

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
<th>Approx F</th>
<th>NumberDF</th>
<th>DenDF</th>
<th>Prob > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilks’ lambda</td>
<td>0.0122</td>
<td>6.5644</td>
<td>27</td>
<td>50.291</td>
<td>0.0001</td>
</tr>
</tbody>
</table>
the data scatter was correlated along a line represented by the equation \(Y = (0.91)X + (-8.66) \) with an \(r^2 = 0.83 \).

The \(\delta^{13}C \) of amino acids formed from pyruvate have a strong statistical correlation due to a shared carbon backbone (Table 3). Valine and leucine contain five and six carbon backbones, respectively; however, they both still share pyruvate with alanine as a common metabolic intermediate. The \(\delta^{13}C \) for valine, alanine, and leucine were determined in 29 microbial samples (Table 2). The \(\delta^{13}C \) values for valine ranged from \(-12.0\%_o\) to \(-69.7\%_o\) with a mean of \(-32.6\%_o \pm 12.7\%_o\). The \(\delta^{13}C \) values for leucine were nearly identical to those observed for valine, \(-11.9\%_o \) to \(-70.5\%_o\) with a mean value of \(-32.5\%_o \pm 11.9\%_o\). The \(\delta^{13}C \) of both valine and leucine were compared and contrasted to the \(\delta^{13}C \) of alanine from individual microorganisms utilizing least square linear regression analysis. Lines with best fits of \(Y = (0.90)X + (-13.0) \) with an \(r^2 \) of 0.86 and \(Y = (0.82)X + (-14.7) \) with an \(r^2 \) of 0.82, respectively, were calculated.

The \(\delta^{13}C \) of amino acids formed from 3-phosphoglycerate have a strong statistical correlation due to a shared carbon backbone (Table 3). The \(\delta^{13}C \) for both serine and glycine was determined in 28 samples (Table 2). In our study, the weakest linear correlation observed between amino acids that are connected through biosynthetic pathways in microorganisms was between serine and glycine. We found that scatter between the \(\delta^{13}C \) of serine and glycine yielded a line represented by the equation \(Y = (0.55)X + (-0.49) \) with an \(r^2 \) of 0.59.

Complex microbial communities: cryptoendolithic communities from the Antarctic Dry Valleys

The Antarctic Dry Valleys are some of the coldest and driest environments on the planet. This extreme environment is seen by some as a possible analog for Mars environments, past and pres-
ent. While the Dry Valleys may be barren of multicellular life, such as plants and animals, complex communities of microorganisms that are able to survive despite the harsh conditions exist there. In the Dry Valleys of Antarctica, microorganisms colonize the pore spaces of exposed rocks and are, thereby, protected from the desiccation. Culture-based physiological studies and microscopy have been used to characterize the cryptoendolithic communities (Friedmann et al., 1993; Sun and Friedmann, 2003). Recently, a 16S rRNA phylogenetic study allowed the community structure of lichen-dominated and cyanobacterial-dominated endolithic communities from Antarctica to be compared and contrasted (de la Torre et al., 2003). Both communities are dominated by a relatively small number of phylotypes that, due to their relative abundance, presumably represent the main primary producers. In lichen-dominated communities, de la Torre et al. (2003) found that three rRNA sequences, from a fungus, a green alga, and a chloroplast, which had been previously identified by other approaches, accounted for over 70% of the clones analyzed. In contrast, cyanobacterium-dominated communities were found to contain, in addition to cyanobacteria, a member of the α-subdivision of the Proteobacteria (potentially capable of aerobic anoxygenic photosynthesis) and an apparent member of a new 16S rRNA defined clade within the Thermus-Deinococcus bacterial phylogenetic division. Despite the phylogenetic differences observed in both communities, however, one would anticipate that CO₂-fixing microorganisms would dominate the carbon isotope characteristics of the organic material formed in the ecosystems.

To test this hypothesis, we analyzed the isotopic signature of the amino acids extracted from sandstone rocks from the Antarctic Dry Valleys. The sandstone had previously been examined by a range of microscopic and organic techniques, and found to have a complex microbial community dominated by cyanobacteria (Sun and Friedmann, 2003). As shown (Fig. 3), we found that the amino acids examined from similar communities were clearly formed by biological activity. We were able to see the signal despite the physical and chemical barriers anticipated due to interactions between the sandstone-matrix and organic material. We found that the δ¹³C pattern of the amino acid pools isolated from the sandstone samples shared many of the isotopic characteristics previously observed in pure cultures cultivated in the laboratory for this study. Furthermore, DFA analysis of the δ¹³C of the alanine, proline, glutamate, aspartate, valine, leucine, isoleucine, threonine, and glycine indicates that they were formed in communities where CO₂ fixation was the dominant metabolism (Fig. 3).

The results of our analysis of the δ¹³C of amino acids from cryptoendolithic communities from the McMurdo Dry Valley were consistent with the interpretations of the physiology of such communities made previously by microscopy, culture-based investigations, and molecular studies. Therefore, DFA analysis of these Antarctic communities made it possible to reveal the autotrophic signal produced by the primary-producing bacteria that dominate the carbon cycle in the ecosystem. This indicates that amino acid-specific stable carbon isotope analysis provides a powerful method for determining what metabolic pathways are involved in the cycling of carbon in the environment.

DISCUSSION

Amino acids are defined as molecules that contain both amino and carboxylic acid functional groups. Over 500 molecules have been discovered and synthesized that can fit this ubiquitous chemical description. Extant life uses a subset of α-amino acids to form macromolecules. In particular, life synthesizes α-amino acids in which the amino and carboxylate functional group are attached to the α-carbon. Furthermore, 20 “common” amino acids have been found in extant life. These amino acids have been well characterized, and their linkage to the universal genetic code has been well documented (Crick, 1968; Sjostrom and Wold, 1985; Wetzel, 1995). However, it should be noted that our knowledge of the code is constantly evolving. For example, two novel amino acids were recently isolated and characterized (Stadtman, 1987; Hao et al., 2002). Seleno-cysteine is a selenium-containing amino acid with the structure of cysteine, in which a selenium atom replaces the sulfur atom. The amino acid is selectively incorporated into many redox enzymes at a UGA codon, which typically indicates a stop codon (Zinoni et al., 1986; Stadtman, 1987). The novel amino acid pyrrolysine in methanogens is incorporated into several enzymes involved in the synthesis of methane (Zinoni et al., 1986; Stadtman, 1987; Hao et al., 2002). The physiological importance of these two amino acids is still not entirely understood.
Finally, life demonstrates a bias toward certain enantiomers in the formation of proteins. For example, amino acids used to form peptides are in the L-configuration, while those found associated with peptidoglycan, which occurs in cell walls in bacteria, are biased toward the D-configuration (Madigan et al., 2002). Recent research has focused on chirality as an important feature of life origins and as a means of distinguishing biologically formed amino acids from those formed by nonbiological processes (Engel and Nagy, 1982; Bada, 1997; Cronin and Pizarello, 1997; Brinton et al., 2002; Sparks et al., 2005; Vandenabeele-Tramboze et al., 2005).

Amino acids can be formed by processes that require no biology. In the interstellar medium, it has been proposed that amino acids can be formed using a Fischer-Tropsch chemical mechanism. This mechanism allows amino acid formation to occur in cooled nebular gases (CO, H$_2$, and NH$_3$) on the surfaces of catalytic icy-dust grains (Hayatsu and Anders, 1981). On planetary bodies (e.g., Earth and Mars), it has been shown that amino acids can be formed utilizing spark-discharge gas-phase chemistry. Miller (1953) and Miller and Urey (1959) demonstrated that amino acids could be formed when a mixture of reduced gases (CH$_4$, NH$_3$, H$_2$, and H$_2$O) is subjected to electrical discharge in a closed system. Interestingly, the resulting product of this experiment is a mixture of amino acids and dicarboxylic acids, which closely mimic the distribution of organics observed in the Murchison meteorite (Wolman et al., 1972).

Amino acid synthesis by extant life proceeds by a set of mechanisms that are very different from those proposed for the formation of meteoritic amino acids (Hayes, 2001; Savidge and Blair, 2004; McDonald and Storrie-Lombardi, 2006). For example, amino acid synthesis includes the fixation of nitrogen in the form of ammonia by assimilation into keto-acids. The keto-acids are provided by intermediates formed by carbohydrate metabolism (i.e., glycolysis or gluconeogenesis) in the case of serine, and CAC intermediates for the formation of alanine, aspartate, and glutamate. Formation of serine, alanine, aspar-
tate, and glutamate serves as an initial step in the biosynthetic pathways that lead to the formation of every other amino acid. The reactions that make up these branching and interconnected pathways consist of rearrangements of the initial carbon skeleton and the assimilation of CO₂ and methyl groups onto the basic carbon framework supplied by the CAC and glycolysis (Kornberg, 1970).

We are comparing the mechanistic differences between amino acids formed by a Fischer-Tropsch or Miller-Urey type reaction and the one-carbon additions and carbon-backbone rearrangements used by extant biology. How carbon bonds are formed and broken in nonbiological versus biological synthesis of amino acids can be differentiated by measuring the stable carbon isotope patterns in the amino acids. In fact, when the isotopic composition of meteoritic amino acids and the data set from this study are compared and contrasted, clear differences emerge. The isotopic fractionation in amino acids formed by nonbiological processes looks very different from a pool of amino acids formed and broken in nonbiological versus biological processes that formed inside sandstone rocks found in the Dry Valleys of Antarctica to determine whether a biochemical signature could be measured. We admit work with more communities is required before the power of this method as a means of analyzing environmental samples can be definitively determined. It is clear that the next key stage of this work will be to apply DFA to natural samples characterized by a greater number of phylotypes and metabolic diversity (e.g., it was not known to what degree the large portion of organics synthesized in these communities by primary producing autotrophic microorganisms influenced the ability to obtain the CO₂ fixation signature). Despite these concerns, however, it is clear that unique carbon isotopic signatures can be teased from a complex microbial community using our method. Biology imprints, on a pool of amino acids, a biosignature that indicates how and what a microbial community metabolizes. Our method can also be used as a means by which to distinguish amino acids formed by biology and nonbiological processes.

ABBREVIATIONS

CAC, citric acid cycle; DFA, discriminant function analysis; MANCOVA, multiple analysis of covariance.

REFERENCES

for extraterrestrial biosignatures. *Astrobiology* 6(1), 17–33.

Address reprint requests to:

James H. Scott
Earth Sciences
Dartmouth College
Fairchild 205, HB6105
Hanover, NH 03755

E-mail: james.scott@dartmouth.edu
SCOTT

AU1
Shortened to \(\leq 45 \) spaces.

AU2
Provide heading

QU1
Should 4 be changed to 5?