Consumer Carbon
Elemental Ecology
Week Five
δ13C Trophic Discrimination Factors (Δ13C)

Δ13C is typically positive

This means the δ13C values of an animal’s tissues are typically slightly higher than the δ13C values of its dietary items

Δ13C varies across tissue types

Red Blood Cells
Collagen
Hair
Feather

Caut et al. 2009
Animal metabolism in terms of $\delta^{13}C$

Diet
- $\delta^{13}C_{\text{Protein}}$
- $\delta^{13}C_{\text{Carbohydrates}}$
- $\delta^{13}C_{\text{Lipids}}$

Assimilation:
- Isotopic Incorporation & Protein Routing

Biosynthesis:
- Proteins, Lipids, Carbohydrates

Tissues
- (Proteins)
- (^{13}C-enriched)

Respiration
- ($^{12}CO_2$)

Tissue-Diet
Isotopic Discrimination ($\Delta^{13}C$)
Animal Carbon Metabolism

Amino Acid Pool ↔ Body Protein ↔ Glucose Pool ↔ Glycogen → Neutral Fat ← Glycerol ↔ Fatty Acids

Food

3-Phosphoglycerate ↓ Glycolysis → Pyruvate

Acetyl CoA

TCA Cycle

13C

12CO$_2$ ↔ Enzymatic isotope effects are really important here!

Gluconeogenesis

Lipid Synthesis

Discrimination (Δ^{13}C): Decarboxylation (Lose 12CO$_2$)

Δ^{13}C...you are what you eat + 0 – 2‰
Animal Carbon Metabolism

Amino Acid Pool → Glucose Pool → Glycogen
Body Protein

Glycerol → Fatty Acids

Food

Gluconeogenesis

Acetyl Group

Enzymatic isotope effects are really important here!

Δ¹³C...you are what you eat + 0 – 2%°
Why do we extract the lipids from our consumer tissue samples?

Lipid $\delta^{13}C$ values are $\sim6\%$ lower than protein $\delta^{13}C$ values!

If we didn’t extract the lipids from fatty consumer tissues, our dietary estimates would be way off.

DeNiro and Epstein 1977, Cherry et al. 2011
Δ\(^{13}\)C varies across tissue types

Table 2. Isotope ratios of total protein in diet, bone and muscle of C\(_3\) and C\(_4\) pigs

<table>
<thead>
<tr>
<th></th>
<th>Isotopic compositions of controlled-diet pigs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\delta^{13})C</td>
</tr>
<tr>
<td>C(_4) pigs</td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td>(-12.4)</td>
</tr>
<tr>
<td>Muscle</td>
<td>(-11.4)</td>
</tr>
<tr>
<td>Collagen</td>
<td>(-9.2)</td>
</tr>
<tr>
<td>Faeces</td>
<td>(-12.8)</td>
</tr>
<tr>
<td>C(_3) pigs</td>
<td></td>
</tr>
<tr>
<td>Diet</td>
<td>(-25.3)</td>
</tr>
<tr>
<td>Muscle</td>
<td>(-23.8)</td>
</tr>
<tr>
<td>Collagen</td>
<td>(-23.9)</td>
</tr>
<tr>
<td>Faeces</td>
<td>(-25.7)</td>
</tr>
</tbody>
</table>

\[\Delta = \delta \text{ pig or faeces sample } - \delta \text{ diet.}\]
Amino acid concentrations vary across tissue types

Wolf et al. 2015
Amino Acids: The Building Blocks of Proteins

Non-Essential Amino Acids

• Simple
• Can be synthesized by all organisms using carbohydrates, lipids, and other amino acids

Essential Amino Acids

• More complex
• Can only be synthesized by plants, bacteria, and fungi
• Animals must acquire them in their diet OR from their symbiotic gut microbes

Glycine
non-essential amino acid

Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, Pro, Ser, Tyr

Valine
essential amino acid

His, Ile, Leu, Lys, Met, Phe, Thr, Try, Val
Collagen contains a lot of glycine.
Non-essential amino acids are easier to synthesize, and animals have retained this ability.

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>TYPE</th>
<th>ATP</th>
<th>NADP</th>
<th># steps to synthesize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glutamate</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Aspartate</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tyrosine¹</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glutamine</td>
<td>NE</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Asparagine</td>
<td>NE</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Serine</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glycine</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proline</td>
<td>NE</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cysteine²</td>
<td>NE</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Valine</td>
<td>E</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Threonine</td>
<td>E</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Leucine</td>
<td>E</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Methionine</td>
<td>E</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Lysine</td>
<td>E</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>E</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Arginine</td>
<td>E</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Histidine</td>
<td>E</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>E</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>E</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

60–72% of amino acids in animal tissues are non-essential.
$\Delta^{13}C$ varies by amino acid

Modified from McMahon et al. 2015
$\delta^{13}C$ values vary among amino acids

Additionally, some of these amino acids have different origins (direct routing vs. \textit{de novo} synthesis).
Plants and animals are made of different macromolecules.

Average Animal or Bacteria
- Protein
- Lipids
- Carbs

Average Plant or Protist
- Carbohydrates
- Lipids
- Protein
A lion is easy, but how do you make a moose?

Lion (~180kg)
Consumes ~10 kg/day
Meat: ~15% Nitrogen
1.5 kg/day of N (~0.8% of body weight)

Moose (~500kg)
Consumes ~30 kg/day
Vegetation: ~2% Nitrogen
0.5 kg/day N (~0.1% of body weight)

Do herbivores, omnivores, and even carnivores use non-protein dietary macromolecules to build proteinaceous tissues?
The Omnivore’s Dilemma: Protein Routing

Berries
(carbohydrates)

Salmon
(proteins & lipids)

Grizzly Bear Tissues
(muscle/hair/blood)
Perfect Mixing vs. Perfect Routing

Berries
(carbohydrates)

Scenario #1: Perfect Mixing

Mixing Models Assume Perfect Mixing

\[\delta^{13}C_{\text{tissues}} = (p)\delta^{13}C_{\text{salmon}} + (1-p)\delta^{13}C_{\text{berries}} \]

Salmon
(protein & lipid)

Scenario #2: Perfect Routing

Sample Preparation Protocols (e.g., lipid extraction)

Assume Perfect Routing of Protein
Why would we expect protein routing?

Textbook Animal Ecophysiology

Dietary Carbohydrates Lipids

Dietary Proteins

Energy + Lipid Storage

Tissue Synthesis

Direct routing decreases the cost of *de novo* (non-essential) amino acid synthesis. But in reality, the size of arrows depends on relative supply versus demand...
Relative Supply vs. Demand

DIET
- Carbohydrates
- Lipids
- Protein

CONSUMER
- Carbohydrates
- Lipids
- Protein

OMNIVORE
Relative Supply vs. Demand

DIET
- Lipids
- Protein

CONSUMER
- Carbohydrates
- Lipids
- Protein

MARINE CARNIVORE
Relative Supply vs. Demand

DIET

- Carbohydrates
- Lipids
- Protein

CONSUMER

- Carbohydrates
- Lipids

HERBIVORE

- Protein
Increased variability in diet macromolecular δ¹³C can lead to increased Δ¹³C protein digestibility could also impact Δ¹³C
Rapidly growing animals/tissues are expected to have decreased $\Delta^{13}C$
Prey type impacts sea otter whisker δ^{13}C TDFs

Sea urchins have high lipid contents

Newsome et al. 2010

$$y = -0.03x + 3.6; \ r^2 = 0.48$$

Fisher's test, $P = 0.03$
Prey type impacts sea otter whisker δ^{13}C TDFs

Whiskers are made up of keratin, which contains a lot of glycine and serine.

These non-essential amino acids are synthesized from 3-phosphoglycerate.
Consumer Carbon Take-Aways: Assumptions

What’s on the menu? **Baseline/Dietary δ^{13}C Values**

- Can vary spatiotemporally
- Must be well-constrained via study design

What did the animal eat? **Trophic Discrimination**

- There is an offset between the δ^{13}C values of an animal’s dietary items and its tissues
- This offset (TDF; Δ^{13}C) varies with diet quality, nutritional status, growth rate, and across tissues types

When did the animal eat it? **Isotopic Incorporation and Tissue Turnover Rates**

- Different animal tissues grow at different rates and thus, tell you about diet over different lengths of time
- Additionally, some tissues are metabolically active (blood plasma) while others are metabolically inert (hair)