Multi-proxy approach for studying the foraging habitat and trophic position of a migratory marine consumer in the southwestern Atlantic Ocean

Juliano L. Coletto1,2,* , Alexi C. Besser3, Silvina Botta2,4, Lauro A. S. P. Madureira1,2, Seth D. Newsome3
1Laboratório de Tecnologia Pesqueira e Hidroacústica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
2Programa de Pós-Graduação em Oceanografia Biológica, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil
3Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
4Laboratório de Ecologia e Conservação da Megafauna Marinha, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS 96203-900, Brazil

ABSTRACT: Skipjack tuna *Katsuwonus pelamis* sustains the largest catches among tuna species. Despite its relevance for global food security and the tuna canning industry, information about its foraging ecology in the southwestern Atlantic Ocean (SWAO) is limited. We combined amino acid (AA) and bulk tissue nitrogen isotope (δ¹⁵N) analysis with stomach content analysis (SCA) to study skipjack foraging habitat and trophic position (TP) in the SWAO. Mean (±SD) δ¹⁵N values of source AAs lysine (Lys: 6.5 ± 1.3‰) and phenylalanine (Phe: 10.6 ± 1.3‰) were higher at higher latitudes (30−34° S) of the southern area relative to the northern area between 20−26° S (Lys: 3.4 ± 1.1‰, Phe: 8.2 ± 1.2‰). Correlations between bulk tissue δ¹⁵N (δ¹⁵Nbulk) and source AA δ¹⁵N showed that Lys is a more robust indicator of δ¹⁵N baseline variation in this region than Phe. Regional mixing models based on AA δ¹⁵N indicated spatial structure in foraging habitat: smaller individuals use the southern area and larger individuals forage at lower latitudes or in offshore areas. TP estimates using the Glx-Lys trophic-source AA pair were in much better agreement with TP estimates based on SCA (TPSCA) and on bulk tissue analysis (TPbulk) than those using Glx-Phe. Skipjack forages across multiple food webs throughout its lifecycle in the SWAO and increases its TP with ontogeny (TPGlx-Lys: 3.5−4.0). Stock management strategies should consider that the southern region supports dense aggregations of juvenile skipjack, which may be more vulnerable to non-selective fisheries.

KEY WORDS: Foraging ecology · Movement · AA-CSIA · Stable isotopes · Nitrogen · Amino acids · *Katsuwonus pelamis*

1. INTRODUCTION

Skipjack tuna *Katsuwonus pelamis* (Scombridae) (hereafter ‘skipjack’) sustain the largest commercial catches among tunas, ranking third among marine fish resources harvested by global fisheries (FAO 2020). The species forms large schools in tropical and subtropical areas of the Atlantic, Indian, and Pacific Oceans (Colette & Nauen 1983). Despite its global distribution and economic importance, skipjack movement patterns are poorly resolved due to its relatively small body size, which limits the use of satellite tags to study movement patterns over the range of sizes harvested by fisheries. In addition, tagging
only tracks movement and cannot resolve foraging habits. Foraging can be addressed by the use of complementary techniques like stomach content analysis (SCA) and stable isotope analysis (SIA) to study ontogenetic patterns in diet composition and trophic positions (TPs) of top predators in pelagic food webs (Popp et al. 2007, Pethybridge et al. 2018, Le-Alvarado et al. 2021).

Nitrogen isotope (δ15N) analysis is often used to estimate TP and food chain length due to systematic increases of ~2−4 ‰ in δ15N values between consumers and their prey (DeNiro & Epstein 1981, Minagawa & Wada 1984, Peterson & Fry 1987, Post 2002). A frequent complicating factor in interpreting δ15N values of top consumers is that δ15N values of primary producers at the base of food webs can vary spatially as a function of taxonomy, inorganic nitrogen source (e.g. N2, nitrate, ammonia), and the efficiency with which nitrogen sources are utilized (Sigman et al. 2009, Graham et al. 2010, McMahon et al. 2013, Trueman & Glew 2019). Thus, interpreting bulk tissue δ15N values (δ15Nbulk) is complicated by the potential effects of changes in TP and variations in the isotope values of primary producers that fuel pelagic marine food webs (Graham et al. 2010, McMahon & Newsome 2019).

Compound-specific SIA (CSIA) of individual amino acids (AA) allows one to separate changes caused by variation in baseline δ15N values from those related to changes in consumer TP (Popp et al. 2007). Trophic AAs (e.g. glutamic acid [Glx], proline [Pro]) undergo significant 15N-enrichment during trophic transfer, while source AAs (e.g. phenylalanine [Phe], lysine [Lys]) experience minimal isotopic alteration as they are passed from prey to consumer (McClelland & Montoya 2002, Popp et al. 2007, McMahon & McCarthy 2016, McMahon & Newsome 2019). This method can be particularly useful for studying the trophic ecology of migratory tunas, which may shift their diet (i.e. TP) and/or foraging areas with ontogeny (e.g. Popp et al. 2007, Graham et al. 2010, Madigan et al. 2014, 2016, Le-Alvarado et al. 2021, Médieu et al. 2021).

Phe has been the preferred source AA and proxy for baseline δ15N values (Lorrain et al. 2015, Le-Alvarado et al. 2021). Recent studies have shown that δ15Nphe values of yellowfin tuna Thunnus albacares muscle are correlated with δ15N values in primary producers (i.e. particulate organic matter) and primary consumers (e.g. copepods, barnacles) in the Indian and Pacific Oceans (Popp et al. 2007, Lorrain et al. 2015) and the Gulf of Mexico (Le-Alvarado et al. 2021). However, TP estimates using Phe as the source AA were a full trophic level lower than expected for yellowfin tuna (Bradley et al. 2015, Lorrain et al. 2015). In addition, a feeding experiment on captive Pacific bluefin tuna T. orientalis by Bradley et al. (2014) reported significant consumer-diet δ15N offsets for Phe (1.5 ± 0.3 ‰) but negligible offset for Lys (−0.3 ± 0.4 ‰). These findings suggest Lys may be a promising source AA for studying δ15N baseline patterns and the trophic ecology of tuna and other top marine consumers (Bradley et al. 2014, McMahon & Newsome 2019).

The distinct oceanographic regimes between the northern (20−28° S) and southern (28−34° S) areas of skipjack feeding grounds in the southwestern Atlantic Ocean (SWAO) result in spatial patterns in zooplankton δ15N isoscapes (Troina et al. 2020a), making it an ideal system for the use of AA δ15N-based TP studies. Lower baseline δ15N values in the northern area indicate a substantial contribution of a 15N-depleted inorganic nitrogen source to the oligotrophic waters of the Brazil Current (BC), in which diazotrophic cyanobacteria (e.g. Trichodesmium) perform N2 fixation, resulting in characteristically low δ15N values (Sigman et al. 2009, McMahon et al. 2013, Troina et al. 2020a). In the southern area, higher δ15N values result from inputs of 15N-enriched nitrogen sources (e.g. NO3−) derived from freshwater discharge (e.g. Rio de La Plata) and/or the cold, nutrient-rich subantarctic waters of the Malvinas Current (Garcia 1997, Matsuura & Andrade 2000, McMahon et al. 2013, Troina et al. 2020a). These nutrient-rich waters sustain large biomasses of forage fish like the Argentinean anchovy Engraulis anchoita (Madureira et al. 2009, Costa et al. 2016) and lanternfish Maurolicus stehmanni (Madureira et al. 2005). These species are key components of the pelagic nektonic food webs in the SWAO (Velasco & Castello 2005, Gasalla et al. 2007), providing the forage base for several predators such as seabirds (Bugoni et al. 2010, Marques et al. 2018, Costa et al. 2020a), marine mammals (Troina et al. 2020b), and large pelagic fish including tunas (Castello et al. 1997).

Previous work on skipjack feeding habits in the SWAO indicated that lanternfish, euphausiids (Euphausia similis), and anchovy are the key food items for the species (Ankenbrandt 1985, Vilela 1990, Coletto et al. 2020). Mixing models combining δ15N and carbon isotope (δ13C) data with informative priors derived from SCA found that lanternfish, krill (E. similis), and small pelagic fish (i.e. anchovies and sardines) were the primary food sources in this region (Coletto et al. 2021). In general, both SCA and isotope-based estimates of diet composition indi-
cated a decrease in the importance of euphausiids and an increase in the proportion of fish with increasing skipjack size (Ankenbrandt 1985, Coletto et al. 2020, 2021). These results indicate that skipjack may increase its TP over ontogeny, however, spatial and size-related shifts in skipjack TP in the SWAO have not been examined to date.

Additionally, our previous work with bulk tissue SIA in the SWAO indicated that δ15N values of skipjack and euphausiids (Coletto et al. 2021) mirrored those of zooplankton δ15N isoscapes (Troina et al. 2020a). This result suggests that schools have a degree of residency at the timescale of isotopic turnover for muscle in the SWAO feeding grounds, and that spatial patterns in the baseline isotopic composition could be exploited to characterize seasonal movements of marine consumers in this region (Coletto et al. 2021). Because δ15Nbulk values decrease with skipjack size in the SWAO, and there is an increase in the consumption of larger prey with increasing skipjack size, we speculate that rather than feeding at a lower trophic level, adults may forage in areas characterized by lower δ15N baselines (Troina et al. 2020a). Therefore, we aimed to use AA δ15N analysis as an additional proxy to support bulk tissue isotope-based inferences of skipjack foraging habitat in the SWAO.

Here, we used a multi-proxy approach to study ontogenetic patterns in skipjack foraging habitat and TP in the SWAO. Specifically, we used (1) AA δ15N analysis to explore ontogenetic shifts in skipjack foraging habitat to test if the decrease in δ15Nbulk found by Coletto et al. (2021) in large-sized individuals is related to foraging in areas with lower δ15N baselines; and (2) SCA along with bulk tissue and AA δ15N analysis to characterize spatial and ontogenetic variation in skipjack TP. The AA δ15N analysis allowed us to separate the effects of foraging across multiple habitats with distinct δ15N baselines from changes in skipjack TP with ontogeny. In addition, our results have methodological implications for how AA δ15N data are used to evaluate spatial variation in baseline δ15N values and TP in top marine consumers.

2. MATERIALS AND METHODS

2.1. Sampling

Samples used in this study were collected from fishing fleet landings between December 2016 and May 2018 at Niterói and Rio Grande, Brazil (Fig. 1). Further details on each data set used are given in the following sections. Catch positions were obtained from logbooks and plotted using QGIS software (version 3.4.9). Samples were classified by depth strata using QGIS as follows: inner shelf (depth: <100 m),

Fig. 1. Distribution of skipjack tuna samples collected in the southwestern Atlantic Ocean. Symbols in the northern (red) and southern (green) areas indicate techniques used to estimate trophic position: stomach content analysis (SCA, triangles); bulk tissue δ15N analysis (bulk-δ15N, medium circles); and amino acid nitrogen analysis (AA-δ15N, large circles). Isobaths are shown in gray scale with increasing depth. Inset shows the Subtropical Convergence Area and major currents in the region: North Brazil Current (NBC), Brazil Current (BC), Malvinas Current (MC).
outer shelf (100–200 m), shelf break and slope (200–500 m), and offshore (>500 m). Specimens were weighed (g) and measured for straight fork length (SFL) to the nearest centimeter. The overall range of SFL for skipjack included in SCA was 36.5–83.0 cm (n = 740), 37.0–80.0 cm for δ¹⁵N_bulk analysis (n = 383), and 39.0–80.0 cm for AA δ¹⁵N analysis (n = 38). Sample sizes were consistent across areas and size classes except for adults in the southern area, which had a small sample size because adults are less abundant in this area (Table 1). Size groups were defined according to the SFL at first maturity (L₅₀ = 46 cm), and the SFL at which all individuals are mature (L₁₀₀ = 63 cm) in the SWAO (Benevenuti Soares et al. 2019). Size groups were defined as juvenile (SFL: <47 cm), young adult (47–63 cm), and adult (>64 cm).

2.2. AA δ¹⁵N analysis

For AA δ¹⁵N analysis, skipjack white muscle samples (n = 38) collected between January 2017 and February 2018 were selected from the bulk tissue data set published in Coletto et al. (2021). Samples were selected according to location of capture (northern and southern areas) and SFL to maximize analysis across ontogeny. Due to the low C:N ratios (3.2 ± 0.1) observed in the bulk tissue data set, we did not extract lipids from muscle tissues prior to AA δ¹⁵N analysis (Post et al. 2007). Approximately 10 mg of muscle tissue was hydrolyzed to its constituent AAs in 1 ml of 6 N HCl at 110°C for 20 h; tubes were flushed with N₂ and tightly sealed to prevent oxidation during hydrolysis. Acid hydrolysis converts glutamine into glutamic acid (hereafter denoted as Glx) and asparagine to aspartic acid. AAs were then derivatized to N-trifluoroacetic acid isopropyl esters following established protocols (Silfer et al. 1991, Whiteman et al. 2019). Samples were derivatized in batches alongside in-house AA reference material containing a mixture of 13 AAs of known isotopic composition. Samples were injected by a Thermo Scientific TriPlus RSH Autosampler into a Thermo Scientific Trace 1310 Gas Chromatograph (GC) outfitted with a 60 m x 0.32 mm ID BPX5 x 1.0 μm GC column (inlet temperature: 250°C). The GC oven ramped from 70 to 300°C (70°C hold for 1 min, increase to 120°C at a rate of 15°C min⁻¹, increase to 195°C at 4°C min⁻¹, increase to 235°C at 5°C min⁻¹, increase to 300°C at 15°C min⁻¹, hold at 300°C for 8 min) and separated, gaseous-derivatized AAs were reduced into N₂ at 1000°C in a Thermo Scientific IsoLink II combustion reactor. The N₂ gas was sent to a Thermo Scientific Delta V Plus IRMS via a Confo IV for isotopic analysis at the University of New Mexico Center for Stable Isotopes (Albuquerque, NM). Samples were analyzed in duplicate or triplicate and bracketed by injections of the in-house AA reference material. Analitical precision, measured as the mean within-run standard deviation of Glx, Lys, and Phe, was 0.3‰. All bulk tissue and AA δ¹⁵N data are reported in δ-notation calibrated to the internationally accepted standard of atmospheric N₂ (AIR).

2.3. AA data analyses

Statistical analyses were performed in R v.3.6.0 (R Core Team 2019). Since δ¹⁵N Glx and δ¹⁵N Lys values met normality and homoscedasticity assumptions, Student’s t-tests were used to compare δ¹⁵N Glx and δ¹⁵N Lys values between the northern and southern areas. δ¹⁵N Phe values were compared between areas with a non-parametric Wilcoxon test, because the data were not normally distributed and homoscedastic. Pairwise Wilcoxon tests with Bonferroni-adjusted p-values for multiple comparisons were used to compare δ¹⁵N Glx, δ¹⁵N Lys, and δ¹⁵N Phe values among size classes (juvenile, young adult, adult) within areas. We plotted δ¹⁵N Glx vs. δ¹⁵N Lys values and δ¹⁵N Glx vs. δ¹⁵N Phe values to identify patterns between areas and size classes in AA δ¹⁵N values for skipjack and to identify individuals that had δ¹⁵N values distinct from their area of sampling. Skipjack δ¹⁵N_bulk values varied with latitude of collection (Coletto et al. 2021).
2021) in agreement with zooplankton δ¹⁵N isoscapes in the SWAO (Troina et al. 2020a). To evaluate which source AA best reflects patterns in skipjack δ¹⁵Nbulk, we used linear models of δ¹⁵Nbulk values vs. δ¹⁵Nlys and δ¹⁵Nphe values, using the coefficient of determination (R²) to assess the goodness of fit.

2.4. Baseline mixing model

To determine the relative contribution of the northern and southern areas for skipjack size classes, we used a 2 end-member mixing model in the stable isotope mixing models package in R (‘simmr’; Parnell 2019). We used δ¹⁵N of Lys and Phe for juveniles as end-members for each area in the mixing model: northern δ¹⁵Nlys = 3.5 ± 0.1‰ (n = 3) and southern δ¹⁵Nlys = 6.1 ± 0.8‰ (n = 6); northern δ¹⁵Nphe = 7.8 ± 1.4‰ (n = 3) and southern δ¹⁵Nphe = 10.5 ± 0.8‰ (n = 6). Juveniles with δ¹⁵N values that differed from the area of sampling were considered recent migrants. These were not used to calculate end-member baseline values. See further details below and in Table S1 in the Supplement at www.int-res.com/articles/suppl/m690p147_supp.pdf for measured isotope values. This approach assumes that skipjack spend at least 3–4 mo in the northern or southern areas of the SWAO (Coletto et al. 2021), which is similar in duration to half-lives estimated for nitrogen isotopes in the bulk (white) muscle tissue (5.5 mo; Madigan et al. 2012) and muscle Lys (4.5 mo; Bradley et al. 2014) in bluefin tuna. Isotopic incorporation rates are likely faster in skipjack relative to bluefin tuna, because skipjack have the highest growth rates among tuna species (Murua et al. 2017). Results are reported as the median and 95% credibility intervals for the proportion of each baseline reflected in skipjack size classes. We estimated the contribution of the 2 isotopic baselines (northern and southern) to skipjack of each size class. This result is reported as the probability of one baseline proportion being higher than the other, which is obtained using the function ‘compare_sources’ in ‘simmr’.

To identify recent migrants that had anomalous (outlier) δ¹⁵Nlys values within areas, we used a 2-end-member mixing model as follows: α = (δ¹⁵Nlys-cons – δ¹⁵Nlys-South) / (δ¹⁵Nlys-North – δ¹⁵Nlys-South), where α is the proportion of the northern baseline in consumer tissue, δ¹⁵Nlys-cons are the measured δ¹⁵Nlys values of each sample, and δ¹⁵Nlys-North and δ¹⁵Nlys-South are the baseline end-members for the northern and southern areas, as indicated above, respectively. Individuals that had a proportion greater than 75% of a baseline other than the regional baseline from which they were captured were considered recent migrants.

2.5. TP via AA δ¹⁵N analysis

The AA δ¹⁵N-based TP estimates for skipjack (n = 38) were calculated using the equation TP Tr-Sr = [δ¹⁵NSr – δ¹⁵NTr – β] / TDF AA + 1, where δ¹⁵NTr and δ¹⁵NSr are the δ¹⁵N values for trophic and source AAs, β is the difference between the δ¹⁵N values of the selected trophic and source AAs in primary producers, and TDF AA is the trophic discrimination factor representing the increase in δ¹⁵N values of the trophic relative to the source AA per trophic level. We calculated 2 TP estimates using a combination of 2 trophic–source AAs: one using Glx-Lys δ¹⁵N values (TPGlx-Lys) and one using Glx-Phe δ¹⁵N values (TPGlx-Phe). We used mean (±SD) βGlx-Lys (3.9 ± 0.5‰), βGlx-Phe (3.6 ± 0.5‰), TDFGlx-Lys (5.2 ± 0.3‰), and TDFGlx-Phe (5.7 ± 0.3‰) values derived from a meta-analysis of marine teleosts (Bradley et al. 2015). We also calculated TP using TDFs reported by Bradley et al. (2014) (TDFGlx-Lys = 8.1 ± 0.4‰; TDFGlx-Phe = 6.3 ± 0.4‰) as well as Nuche-Pascual et al. (2021) (TDFGlx-Lys = 6.2 ± 2.2‰; TDFGlx-Phe 6.2 ± 2.1‰). Finally, we calculated TP using the weighted mean δ¹⁵N values of trophic (alanine, leucine, Glx) and source (Phe, Lys, glycine) AAs (TP Tr-Sr; Choy et al. 2015). We used the mean (±SD) for βTr-Sr (3.6 ± 0.5‰) and TDF Tr-Sr (5.7 ± 0.3‰). Errors were propagated following equations available in Dale et al. (2011) and Sabadel et al. (2020) by combining the analytical uncertainty in AA δ¹⁵N values with the uncertainty in βTr-Sr and TDF Tr-Sr. TP Glx-Lys, TP Glx-Phe, and TP Tr-Sr were compared between areas (northern vs. southern) using Student’s t-tests. Pairwise Wilcoxon tests with Bonferroni-adjusted p-values for multiple comparisons were used to compare TP Glx-Lys, TP Glx-Phe, and TP Tr-Sr among size classes (juvenile, young adult, adult) within areas.

2.6. TP via SCA

We used a data set (n = 740) of samples collected during 2016–2018 (Coletto et al. 2020) for calculating TP based on SCA (TP SCA). Stomach contents were removed and kept frozen or fixed in formalin (10%) until further processing in the laboratory. Food items were sorted and identified to the lowest taxon possible using identification keys for Crustacea, Mollusca, and Teleostei (e.g. Figueiredo & Menezes 1980, Gibbons et al. 1999, Haimovici et al. 2009). For each indi-
individual stomach, prey items from each category were weighed (g) and counted. The degrees of digestion were determined using criteria developed by Vaske et al. (2004). Bait species (i.e. Sardinella brasiliensis, Engraulis anchoita) found in skipjack stomachs in the initial stages of digestion (i.e. non-digested, starting digestion) were removed from the analysis, assuming they were not ingested as natural food.

\[\text{TP}_{\text{SCA}} = 1 + \left(\sum_{i} P_i \times \text{TP}_i \right) \]

where \(n \) is the number of prey categories, \(P_i \) is the mass proportion of prey category \(i \), and \(\text{TP}_i \) is the TP of prey category \(i \) (Cortés 1999). In total, 12 prey categories belonging to 3 taxonomic groups (i.e. Crustacea, Mollusca, Teleostei) were used to calculate \(\text{TP}_{\text{SCA}} \) for skipjack. TPs of prey categories reported in the literature and their mass percentages are provided in Table S2. TP for the unidentified Teleostei was calculated through the weighted mean of mass proportion of prey category \(i \).

An average TP of 2.4 from 2 independent estimates was used as euphausiids: *Euphausia pacifica* (TP = 2.5; Sogawa et al. 2017) and *Thysanopoda* spp. (TP = 2.3; Hannides et al. 2009).

2.7. TP via δ\(^{15}\)N\(_{\text{bulk}}\) analysis

We estimated bulk tissue TP (TP\(_{\text{bulk}}\)) with δ\(^{15}\)N data for 383 skipjack collected between 2016–2018 and published in Coletto et al. (2021). Further information on the collection, storage, and treatment of muscle samples prior to isotope analysis can be found in Coletto et al. (2021). The Bayesian package ‘Trophic-Position’ (Quezada-Romegialli et al. 2019) in R (R Core Team 2019) was used to estimate TP\(_{\text{bulk}}\) by area (northern and southern) and size class (juvenile, young adult, adult) within each area. This approach includes sources of variation for δ\(^{15}\)N baseline estimates and consumer-diet TDFs to provide robust estimates of TP. We used the ‘Onebaseline’ model to account for the difference in δ\(^{15}\)N values in primary consumers and skipjack bulk tissue between areas in the SWAO (Troina et al. 2020a, Coletto et al. 2021). The ‘Onebaseline’ model assumes that a consumer’s δ\(^{15}\)N value is equal to δ\(^{15}\)N\(_{\text{baseline}}\) + TDF(TP − \(\lambda \)); where δ\(^{15}\)N\(_{\text{baseline}}\) is the isotopic signature of the baseline organism, TDF is the trophic discrimination factor for each step in the food web, and \(\lambda \) is the TP of the baseline organism (Quezada-Romegialli et al. 2019), which is represented by zooplankton in our models. Published δ\(^{15}\)N values for copepods sampled along the shelf break in the SWAO were used as proxies for the isotopic baseline in each area (northern: δ\(^{15}\)N\(_{\text{copepods}}\) = 4.3 ± 1.7\(\%_o\), \(n = 12 \); southern: δ\(^{15}\)N\(_{\text{copepods}}\) = 6.1 ± 2.3\(\%_o\), \(n = 21 \); Troina et al. 2020a). Because the majority of adult skipjack (62\%) sampled in the northern area were caught in offshore waters (i.e. depth >500 m; Figs. 1 & 2), we used the mean δ\(^{15}\)N value for copepods collected from shelf break and offshore waters (δ\(^{15}\)N\(_{\text{copepods}}\) = 2.8 ± 1.3\(\%_o\), \(n = 28 \); Troina et al. 2020a) as an isotopic baseline to estimate TP in this area. The baseline TP for copepods was set to 2.2 assuming a lower degree of omnivory (i.e. 80\% grazing, 20\% predation), which is in the lower range of TP estimates for copepod species in the North Pacific (Hannides et al. 2009). Studies show that TDFs for δ\(^{15}\)N can vary with form of nitrogen excretion, tissue type, environment, taxa, and diet quality (Post 2002, McCutchan et al. 2003, Vanderklift & Ponsard 2003, Caut et al. 2009). We selected published TDF values for muscle of marine ammniotelic fish (Δ\(^{15}\)N: 3.7\(\%_o\)) and calculated the uncertainty around the mean value by subtracting the maximum from the minimum estimate divided by 2 (Table S3). We also estimated TP\(_{\text{bulk}}\) using the mean TDF for marine fishes based on the meta-analysis reported in Vanderklift & Ponsard (2003) (Δ\(^{15}\)N: 2.4\(\%_o\)). The function ‘simulateTDF’ was used to include TDF values and their variability in the models. Simulations were run with 4 chains and 20,000 adaptations.

3. RESULTS

3.1. Glx, Lys, and Phe δ\(^{15}\)N values

Skipjack collected in the southern area had higher δ\(^{15}\)N\(_{\text{Glx}}\) (\(t = -3.16, \text{df} = 32.4, p < 0.05 \)), δ\(^{15}\)N\(_{\text{Lys}}\) (\(t = -4.48, \text{df} = 31.7, p < 0.001 \)), and δ\(^{15}\)N\(_{\text{Phe}}\) (Wilcoxon test, \(W = 80, p < 0.05 \)) values than in the northern area (Table 2). There was a significant positive correlation between skipjack muscle δ\(^{15}\)N\(_{\text{Glx}}\) and δ\(^{15}\)N\(_{\text{Lys}}\) values (Fig. 2A): δ\(^{15}\)N\(_{\text{Glx}}\) = 0.56 (±0.1) × δ\(^{15}\)N\(_{\text{Lys}}\) − 20.11 (±0.5); (\(F_{1,36} = 32.59, p < 0.001, R^2 = 0.46 \)) as well as between δ\(^{15}\)N\(_{\text{Glx}}\) and δ\(^{15}\)N\(_{\text{Phe}}\) values (Fig. 2B): δ\(^{15}\)N\(_{\text{Glx}}\) = 0.40 (±0.1) × δ\(^{15}\)N\(_{\text{Phe}}\) − 19.13 (±1.3); (\(F_{1,36} = 9.68, p < 0.05, R^2 = 0.19 \)). There was a stronger relationship between δ\(^{15}\)N\(_{\text{bulk}}\) and δ\(^{15}\)N\(_{\text{Lys}}\) values (Fig. 3A; \(F_{1,36} = 174.2, p < 0.001, R^2 = 0.82 \)) in comparison to δ\(^{15}\)N\(_{\text{bulk}}\) and δ\(^{15}\)N\(_{\text{Phe}}\) values (Fig. 3B; \(F_{1,36} = 17.4, p < 0.001, R^2 = 0.30 \)). δ\(^{15}\)N\(_{\text{Glx}}\), δ\(^{15}\)N\(_{\text{Lys}}\), and δ\(^{15}\)N\(_{\text{Phe}}\) values did not differ among size groups in either area (pairwise Wilcoxon test, \(p > 0.05 \)) (Table 2). In the southern area, δ\(^{15}\)N\(_{\text{Lys}}\) values increased sharply with skipjack size up to ~54 cm SFL and then decreased in skipjack larger than ~55 cm.
Table 2. Mean (±SD) and range of δ¹⁵N values for glutamic acid (Glx), lysine (Lys), and phenylalanine (Phe) of skipjack size classes for each area of the southwestern Atlantic Ocean. Corrected (corr) mean δ¹⁵N values used in mixing models do not include outliers (n = 6) that had δ¹⁵N values indicative of recent migration from another area.

<table>
<thead>
<tr>
<th>Area</th>
<th>Size class</th>
<th>n</th>
<th>δ¹⁵NGlx (‰)</th>
<th>δ¹⁵NGlx corr (‰)</th>
<th>δ¹⁵NLys (‰)</th>
<th>δ¹⁵NLys corr (‰)</th>
<th>δ¹⁵NPhe (‰)</th>
<th>δ¹⁵NPhe corr (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern</td>
<td>19</td>
<td>22.3 ± 1.6 (20.1−25.7)</td>
<td>21.8 ± 1.1</td>
<td>4.1 ± 1.8 (1.6−8.2)</td>
<td>3.4 ± 1.1</td>
<td>8.9 ± 1.9 (6.7−12.8)</td>
<td>8.2 ± 1.2</td>
<td></td>
</tr>
<tr>
<td>Juvenile</td>
<td>5</td>
<td>22.0 ± 2.3 (20.1−25.6)</td>
<td>20.6 ± 0.6</td>
<td>5.1 ± 2.3 (3.4−8.2)</td>
<td>3.5 ± 0.1</td>
<td>9.7 ± 2.9 (6.7−12.8)</td>
<td>7.8 ± 1.4</td>
<td></td>
</tr>
<tr>
<td>Young adult</td>
<td>5</td>
<td>22.8 ± 1.8 (20.9−25.7)</td>
<td>22.1 ± 0.9</td>
<td>4.6 ± 1.3 (3.2−6.3)</td>
<td>4.2 ± 1.0</td>
<td>8.7 ± 1.8 (6.9−11.3)</td>
<td>8.0 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>8</td>
<td>22.2 ± 1.0 (20.9−23.5)</td>
<td>22.2 ± 1.0</td>
<td>3.0 ± 1.2 (1.6−5.0)</td>
<td>3.0 ± 1.2</td>
<td>8.5 ± 1.2 (7.3−11.2)</td>
<td>8.5 ± 1.2</td>
<td></td>
</tr>
<tr>
<td>Southern</td>
<td>20</td>
<td>23.8 ± 1.2 (20.8−25.6)</td>
<td>23.9 ± 1.2</td>
<td>6.3 ± 1.3 (3.9−8.4)</td>
<td>6.5 ± 1.3</td>
<td>10.6 ± 1.3 (8.6−13.0)</td>
<td>10.6 ± 1.3</td>
<td></td>
</tr>
<tr>
<td>Juvenile</td>
<td>7</td>
<td>23.2 ± 1.7 (20.8−25.6)</td>
<td>23.5 ± 1.7</td>
<td>5.8 ± 1.1 (4.1−7.3)</td>
<td>6.1 ± 0.8</td>
<td>10.3 ± 0.8 (9.1−11.2)</td>
<td>10.5 ± 0.8</td>
<td></td>
</tr>
<tr>
<td>Young adult</td>
<td>12</td>
<td>24.1 ± 0.9 (22.5−23.6)</td>
<td>24.1 ± 0.9</td>
<td>6.9 ± 1.2 (4.5−8.4)</td>
<td>6.9 ± 1.2</td>
<td>10.6 ± 1.5 (8.6−13.0)</td>
<td>10.6 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Adult</td>
<td>1</td>
<td>23.6</td>
<td>23.6</td>
<td>3.9</td>
<td>3.9</td>
<td>11.4</td>
<td>11.4</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Relationship between δ¹⁵N values for (A) glutamic acid (Glx) (trophic amino acid [AA]) and lysine (Lys) (source AA), and (B) Glx and phenylalanine (Phe) (source AA). Circle size denotes size class; symbols represent mean values for size classes for each area: juvenile (JUV, circle), young adult (YAD, triangle), adult (AD, square). Error bars: ±1 SD.

Fig. 3. Relationship between (A) δ¹⁵Nbulk and δ¹⁵NLys values and (B) δ¹⁵Nbulk and δ¹⁵NPhe values for skipjack in the southwestern Atlantic Ocean. Shaded areas: 95% confidence interval for each model slope.
SFL (Fig. 4A). A similar pattern was observed in skipjack collected from the northern area. δ^{15}N$_{\text{Phe}}$ values also increased with skipjack size up to ~60 cm SFL in both areas and decreased in large skipjack in the northern area (Fig. 4B).

3.2. Baseline mixing model

The relative contribution of the northern and southern areas reflected in δ^{15}N$_{\text{Lys}}$ and δ^{15}N$_{\text{Phe}}$ values assumed to represent the baseline differed among size classes (Fig. 5). The mixing model with δ^{15}N$_{\text{Lys}}$ values indicated a higher proportion of the southern baseline in juveniles (73%) and young adults (88%) relative to the northern area (probabilities = 0.9 and 1.0, respectively). Adults had a higher proportion of the northern baseline (89%) relative to the southern baseline (probability = 1.0). Similarly, the mixing model with δ^{15}N$_{\text{Phe}}$ values indicated a higher proportion of the southern baseline in juveniles (75%) and young adults (78%) (probabilities = 0.9 and 1.0, respectively) in comparison to adults, which had a higher contribution of the northern baseline (62%) relative to the southern baseline (probability = 0.7). Mixing models using δ^{15}N$_{\text{Lys}}$ values to quantify the relative proportion of baselines between areas for individual skipjack showed that 4 individuals caught in the northern area had high δ^{15}N$_{\text{Lys}}$ values, indicating that they had recently moved from the southern area (Fig. 6). Likewise, 2 individuals sampled in the southern area had δ^{15}N$_{\text{Lys}}$ values indicative of recent migration from the northern area (Fig. 6).

Fig. 4. Relationship between skipjack straight fork length and δ^{15}N values for the source amino acids (A) lysine (δ^{15}N$_{\text{Lys}}$) and (B) phenylalanine (δ^{15}N$_{\text{Phe}}$) in the southwestern Atlantic Ocean.

Fig. 5. Estimated mean (±SD) contribution of the northern (red) and southern (green) regional nitrogen isotopic baselines to skipjack muscle tissue in the southwestern Atlantic Ocean, inferred from source amino acids (A) lysine and (B) phenylalanine. JUV: juvenile; YAD: young adult; AD: adult
3.3. Diet composition

Prey identified from skipjack stomach contents were separated into 12 categories (Table S2). In the northern area, Teleostei was the most important taxonomic group (91% mass [%M]) (Table S2). Among fish prey families, Clupeidae had the highest mass percentage (46%M), followed by unidentifed fish (33%M), and Carangidae (10%M). Crustaceans (euphausiids) were of minor importance in the northern area (8%M). With increasing skipjack size, the importance of euphausiids (juvenile: 14%M; young adult: 13%M; adult: 0%M) declined. There were small shifts in the importance of Engraulidae (juvenile: 4%M; young adult: 7%M; adult: 0%M) increased from juveniles to young adults (Table S2). Overall, Mollusca had a small contribution to skipjack stomach contents by mass in both the northern (1%M) and southern areas (2%M), except for adults, which consumed Argonautidae (24%M) and unidentified gastropods (16%M) in the southern area.

3.4 TPSCA, TPbulk, TPGlx-Lys, TPGlx-Phe, and TPTr-Sr

Mean (±SD) TPSCA for all skipjack in the SWAO was 3.7 ± 0.2. TPSCA was slightly but not significantly higher for skipjack caught in the northern (3.8) than the southern area (3.6) (Table 3). TPSCA increased slightly with skipjack size in the northern area (3.8−3.9) in comparison to the southern area (3.5−3.9) (Table 3, Fig. 7). TPbulk was similar between the northern (3.7) and southern (3.8) areas (Table 3). In the northern area, adults had higher TPbulk (4.0) in comparison to young adults (3.8; probability = 0.9) and juveniles (3.5; probability = 1) (Fig. 7). In the southern area, young adults had higher TPbulk (3.9) in comparison to juveniles (3.6; probability = 0.9) (Fig. 7). TPbulk estimates for adults in the southern area were similar to those

<table>
<thead>
<tr>
<th>Area</th>
<th>Size class</th>
<th>TPSCA</th>
<th>TPbulk</th>
<th>TPGlx-Lys</th>
<th>TPGlx-Phe</th>
<th>TPTr-Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td>Juvenile</td>
<td>3.8</td>
<td>3.7</td>
<td>3.8 ± 0.2</td>
<td>2.7 ± 0.3</td>
<td>3.5 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>Young Adult</td>
<td>3.8</td>
<td>3.5</td>
<td>3.5 ± 0.2</td>
<td>2.5 ± 0.3</td>
<td>3.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>3.9</td>
<td>4.0</td>
<td>3.9 ± 0.1</td>
<td>2.8 ± 0.2</td>
<td>3.5 ± 0.6</td>
</tr>
<tr>
<td>South</td>
<td>Juvenile</td>
<td>3.6</td>
<td>3.8</td>
<td>3.6 ± 0.3</td>
<td>2.7 ± 0.3</td>
<td>3.7 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>Young Adult</td>
<td>3.6</td>
<td>3.6</td>
<td>3.6 ± 0.3</td>
<td>2.6 ± 0.4</td>
<td>3.5 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>Adult</td>
<td>3.8</td>
<td>3.5</td>
<td>3.6 ± 0.3</td>
<td>2.7 ± 0.3</td>
<td>3.8 ± 0.3</td>
</tr>
</tbody>
</table>
of juveniles and were highly variable (Table 3). Values of TP_{bulk} using a TDF of 2.4 were nearly 1 unit higher than those calculated with a TDF of 3.6, following similar patterns when comparing skipjack size classes (Table S4). TP_{Glx-Lys} varied from 2.9−4.1 with a mean (±SD) of 3.7 ± 0.3. The mean TP_{Glx-Lys} for skipjack was similar between the northern (3.8 ± 0.2) and southern areas (3.6 ± 0.3) (t = 1.9, df = 35.4, p = 0.06). In the northern area, TP_{Glx-Lys} was higher in adult skipjack (3.9 ± 0.1) in comparison to juveniles (3.5 ± 0.2) (pairwise Wilcoxon test, p < 0.05; Fig. 7). TP_{Glx-Lys} were not different among size groups in the southern area (pairwise Wilcoxon test, p > 0.05).

TP_{Glx-Phe} varied from 2.1−3.3 with a mean (±SD) of 2.7 ± 0.3, and was similar between the northern (2.7 ± 0.3) and southern areas (2.7 ± 0.3) (t = 0.4, df = 35.3, p = 0.7). There were no differences in TP_{Glx-Phe} among size classes in either the northern or southern areas (pairwise Wilcoxon test, p > 0.05; Fig. 7).

TP estimates using alternative TDF values are shown in Table S4. Overall, TP_{Glx-Lys} estimated with TDF_{Glx-Lys} from Nuche Pascual et al. (2021) underestimated TP by approximately one-half a trophic level; TP_{Glx-Phe} estimates based on TDF_{Glx-Phe} from Bradley et al. (2014) and TP_{Glx-Phe} estimates based on TDF from both studies underestimated TP for skipjack by approximately one trophic level in comparison to estimates based on TP_{SCA}, TP_{bulk}, and TP_{Glx-Lys} (Table S4).

Finally, TP_{Tr-Sr} varied from 2.7−4.7 with a mean (±SD) of 3.6 ± 0.4 and was similar between the northern (3.5 ± 0.4) and southern areas (3.7 ± 0.4) (t = −1.5, df = 35.7, p = 0.1). There were no differences in TP_{Tr-Sr} among size classes in either the northern or southern areas (pairwise Wilcoxon test, p = 1; Fig. 7).
4. DISCUSSION

We applied multiple techniques to study the foraging habitat and TP of a widely distributed pelagic consumer that plays an important role in food security in the SWAO and worldwide. Our study showed that the SWAO skipjack population uses multiple habitats with distinct δ^{15}N baselines over its lifetime. Nitrogen isotope values of source AAs Lys and Phe were correlated with δ^{15}Nbulk values, demonstrating that the variation in δ^{15}Nbulk values in skipjack is driven by latitudinal gradients in baseline δ^{15}N values. Baseline mixing models indicated that the productive southern area (Castello et al. 1997, Matsuura & Andrade 2000) is used by juveniles and young adults, most likely to fuel rapid growth. The decrease in δ^{15}Nlys and δ^{15}Nphe values with skipjack size showed that adults forage in warmer oligotrophic areas with lower δ^{15}N baselines. By disentangling baseline and ontogenetic patterns in δ^{15}N values with trophic (Glx) and source (Lys) AAs, our results showed that skipjack is a tertiary consumer that increases its TP over ontogeny (TPGlx-Lys: 3.5–4.0).

Lastly, TP estimates using Phe as the canonical source AA consistently underestimated TP across size classes, while estimates using Lys agreed with those based on SCA and δ^{15}Nbulk. Our multi-proxy approach provides novel insights into the foraging habitat, movement dynamics, and TP of skipjack in pelagic food webs of the SWAO, which will better inform ecosystem models and management strategies for the sustainable use of this fishery resource in this region.

4.1. Foraging habitats and movement dynamics

Skipjack captured in the southern area had higher δ^{15}Nlys and δ^{15}Nphe values than those captured in the northern area (Table 2). These results were consistent with fine-scale zooplankton (e.g. copepods, euphausiids) δ^{15}N isoscapes characterized by a positive correlation between baseline δ^{15}N and latitude and a decrease in baseline δ^{15}N in offshore waters of the SWAO (Troina et al. 2020a). Bulk tissue and AA δ^{15}N values in cetaceans foraging along the SWAO showed similar trends mirroring δ^{15}N baselines (Troina et al. 2020b, 2021). Coletto et al. (2021) reported a trend of increasing skipjack bulk muscle tissue δ^{15}N values with increasing latitude. Based on our results using Lys and Phe δ^{15}N values, there is strong evidence indicating that this result was driven by spatial variation in baseline δ^{15}N values rather than spatial variation in skipjack TP. The relationships between δ^{15}Nbulk and δ^{15}Nlys ($R^2 = 0.82$) or δ^{15}Nphe ($R^2 = 0.30$) values confirmed that most of the variation in skipjack δ^{15}N values is explained by δ^{15}N variation at the base of the food web in the SWAO (Fig. 3). The much higher goodness-of-fit between δ^{15}Nbulk and δ^{15}Nlys than δ^{15}Nbulk and δ^{15}Nphe indicates that Lys may be a more reliable proxy for baseline δ^{15}N values for skipjack, as Lys undergoes less isotope fractionation between consumer-diet in tunas in comparison to Phe (Bradley et al. 2014). Alternatively, Bradley et al. (2014) found that Lys had faster turnover rates than glycine and serine. Although data for Phe are not available for a direct comparison, Lys in muscle would reach steady-state with local baselines faster if this source AA had a higher isotopic incorporation rate.

Overall, the baseline δ^{15}N patterns reported in this study for skipjack are consistent with studies on pelagic predators in other ocean basins. The latitudinal pattern in δ^{15}N values of yellowfin tuna and swordfish Xiphias gladius was explained by spatial variation in δ^{15}N baselines propagating up the food chain in the western Indian Ocean (Ménard et al. 2007). Off eastern Australia, several top predators had δ^{15}Nbulk values that were consistent with a shift from lower baseline δ^{15}N values in the oligotrophic Coral Sea to higher values in nutrient-rich waters of the Tasman Sea (Revill et al. 2009). In the eastern tropical Pacific, the large range in yellowfin tuna δ^{15}Nbulk values (11‰) was explained by spatial variation in δ^{15}N baselines (Lorrain et al. 2015). Similarly, δ^{15}Nbulk values in yellowfin and bigeye Thunnus obsesus tunas were also related to nutrient dynamics in the western central Pacific Ocean, which induce important variability in the δ^{15}N values at the base of the food web (Popp et al. 2007, Graham et al. 2010, Olson et al. 2010).

In general, skipjack caught in either the southern or northern areas showed δ^{15}Nlys and δ^{15}Nphe values consistent with the foraging ground where they were collected, providing strong evidence for local feeding and indicating most of the samples were in steady-state with the local δ^{15}N baseline. However, some individuals appeared as outliers (Figs. 2 & 6) and showed a mismatch between their δ^{15}N values and baseline δ^{15}N values in their area of capture, which likely reflects recent long-distance movements between these 2 isotopically distinct areas. This interpretation agrees with previous work in which δ^{15}N analysis of source AAs was used to distinguish recent Pacific bluefin tuna migrants from eastern Pacific Ocean residents (Madigan et al. 2014). Isotopically
distinct ecoregions in the western Pacific Ocean were also used to infer previous foraging areas of Pacific bluefin tuna sampled in the spawning grounds off Taiwan, with 2 outlier individuals being identified as potential transoceanic migrants (Madjian et al. 2016).

In our study, 2 individuals caught in the southern area had δ15Nlys nearly identical to the northern δ15Nlys baseline (Figs. 2A & 6). One was an adult captured during summer and the other was a juvenile captured during spring (Table S1). The movement of these individuals was likely driven by sea surface temperature dynamics in the SWAO, in which schools move southwards with seasonal shifts in the temperature dynamics in the SWAO, in which 4 additional individuals captured in the BC during spring and summer (Matsuura & Andrade 2003, Coletto et al. 2019, 2021). Our AA δ15N results thus corroborate previous studies that demonstrated skipjack move seasonally following SST dynamics in the SWAO (Castello & Habiaga 1989, Matsuura & Andrade 2000) based on spatio-temporal patterns in catch statistics (e.g. Andrade 2003, Coletto et al. 2019), tagging and recapture (e.g. Luckhurst 2014), and intrinsic isotopic markers in bulk tissues (i.e. δ15Nbulk) (Coletto et al. 2021). The fourth individual was caught in late January, indicating that some schools may move toward lower latitudes during the summer to initiate spawning (Jablonski et al. 1984).

Our results also showed a decrease in δ15Nlys and δ15Nprobe values with increasing skipjack size, indicating that adults forage more often in the northern area, which is characterized by lower baseline δ15N. The spatial distribution of skipjack size classes by depth (Figs. S1 & S2) showed that adults were caught more often in the northern area and further offshore in deeper waters, where zooplankton δ15N values were lower than in higher latitudes and at the continental shelf break (Troina et al. 2020a). This result could be the product of our sampling design, however, previous studies of this population confirm that adults are more frequently caught in the northern area relative to the southern area (e.g. Ankenbrandt 1985, Andrade & Kinas 2004, Benevenuti Soares et al. 2019, Costa et al. 2020b), indicating some geographical structure in the demography of the skipjack population in the SWAO. The higher contribution of the northern isotopic baseline to adult skipjack δ15N values appears to be linked to foraging and reproduction in warm and permanently stratified tropical waters found in lower latitudes. Although spawning seems to be opportunistic (Cayré & Farrugio 1986, Castello & Habiaga 1989, Vilela & Castello 1993) and distributed throughout the year in areas with SST higher than 24°C in the western Atlantic, larval density is higher during the summer near the Abrolhos Bank and the North Brazil Current (Fig. 1; Jablonski et al. 1984, Matsuura & Andrade 2000, Katsumaragawa et al. 2020), indicating that adults use tropical areas at lower latitudes for reproduction.

In contrast to patterns for adults, mixing models indicated higher contribution of the southern area to juveniles and young adults. Higher feeding frequency, reflected as an overall lower frequency of empty stomachs, has been observed in the southern area relative to fish in the northern area, which supports the idea that this area is the primary foraging ground for juveniles and young adults (Costa et al. 2020b). Finally, the conclusion that younger individuals use subtropical areas for feeding and growth is also supported by the high abundance of forage found in the productive waters of the southern area, such as small pelagic fish like anchovy and lanternfish (Matsuura & Andrade 2000, Madureira et al. 2005, 2009) and krill (i.e. Euphausia similis) that collectively form the resource base for skipjack in the SWAO (Ankenbrandt 1985, Vilela 1990, Coletto et al. 2021).

4.2. Skipjack foraging ecology and TP

Our multi-proxy estimates of skipjack TP show this species is a tertiary consumer in the pelagic food webs of the SWAO (overall TP range: 3.5–4.0), which is consistent with previous reports of skipjack TP derived from ecotrophic models in this region (TP = 3.5; Gasalla et al. 2007). In contrast, TP estimates reported here are lower than those based on δ15Nbulk analysis of a limited number of skipjack (n = 3) in the SWAO (TPbulk = 4.2 ± 0.4; Bugoni et al. 2010) and those based on AA δ15N analysis of skipjack in the North Pacific Subtropical Gyre (TP = 4.2 ± 0.4; Choy et al. 2015).
Considering all size classes, TP\textsubscript{SCA} was slightly higher in the northern area (3.8) than in the southern area (3.6). Previous studies showed that nearly 75\% of stomach contents by volume in the northern area were lanternfish \textit{Maurolicus stehmanni} and other teleosts (Ankenbrandt 1985), indicating that teleosts (TP range 2.8–3.0) are an important resource for skipjack in this area (Coletto et al. 2020). Lanternfish distribution is linked to the limit between the South Atlantic Central Water (SACW) and warm tropical waters (Madureira et al. 2005), indicating spatial overlap between skipjack and lanternfish in shelf break/slope habitats in the SWAO (Monteiro-Neto et al. 2020). Ecotrophic models pointed out lanternfish and anchovy are the main trophic links between basal and upper trophic levels in pelagic food webs in the SWAO (Velasco & Castello 2005, Gasalla et al. 2007). In contrast, lower TP\textsubscript{SCA} estimates in the southern area are likely associated with heavy foraging activity on dense patches of krill, which occupy a lower TP than lanternfish. Andrade (2003) suggested that peaks of skipjack fishing activity in the southern area might be related to availability of \textit{E. similis}, as krill is more abundant in summer over the shelf (Gorri 1995). This is supported by our observations of dense skipjack feeding aggregations in neritic waters in the southern area, where the main prey found in stomach contents was krill (Coletto et al. 2020, Table S2). High prey abundances and oceanographic features such as thermal and chlorophyll fronts as well as a shallow thermocline during summer may result in higher skipjack abundance (i.e. higher catch per unit of effort) in the southern area (Lima et al. 2000, Andrade 2003, Coletto et al. 2019). Collectively, these patterns suggest a higher vulnerability of the stock to overfishing in the southern area, particularly for young skipjack when non-selective fishing methods (e.g. purse seiners) are deployed.

In general, skipjack TP increased through ontogeny, which is likely driven by smaller sized individuals consuming more krill and larger skipjack consuming more teleosts. This pattern was also noted by Ankenbrandt (1985). Our previously published isotope-based estimates of diet composition indicate a higher importance of krill for juveniles, while higher-TP prey such as small pelagic fish, Carangidae, and Ommastrephidae increased in importance for adults (Coletto et al. 2021). These results agree with ontogenetic patterns in vertical habitat use for skipjack. Smaller sized skipjack are epipelagic and forage above the thermocline, while adults can perform short dives into deeper, colder, and less oxygenated waters (Bernal et al. 2017, Monteiro-Neto et al. 2020). Increased diving capability enhances access to larger, deep-dwelling mesopelagic micro-nekton prey of higher TP (Graham et al. 2007, Hossard et al. 2017). For example, vertical movements of large (adult) skipjack tagged in the SWAO were strongly correlated with lanternfish nictemeral behavior (Madureira et al. 2005, Monteiro-Neto et al. 2020). In the eastern equatorial Pacific, skipjack occupy shallow waters at night and use a bounce diving behavior during the day to forage on prey associated with the deep scattering layer (Schaefer et al. 2009, Schaefer & Fuller 2013). Furthermore, global compilations show that deeper foraging yellowfin, bigeye, and albacore \textit{T. alalunga} tunas have higher TP (Pethybridge et al. 2018). TP patterns may also result from differences in the assemblages of primary producers in highly productive nearshore versus oligotrophic offshore waters. For example, in the eastern tropical Pacific, an inshore–offshore increase in yellowfin TP occurred due to greater food chain length resulting from smaller phytoplankton dominating in oligotrophic waters, while larger primary producers generally dominate nutrient-rich regions (Olson et al. 2010), which may shorten food chains and by extension decrease the TP of top consumers.

Exceptions to the trend of increasing TP with ontogeny were estimates of TP\textsubscript{SCA} in the northern area and TP\textsubscript{bulk} for adults in the southern area. TP\textsubscript{SCA} depends on the relative mass proportions of prey categories and their respective TP (Cortés 1999). The dominance of teleost prey with a narrow range in TP may have flattened the ontogenetic TP\textsubscript{SCA} pattern in the northern area. Observed differences in TP\textsubscript{SCA} and TP\textsubscript{bulk} were expected, as SCA may identify food items ingested by skipjack only up to 12 h prior to capture (Magnuson 1969), while complete isotopic incorporation for rapidly growing yellowfin muscle is ~6 mo (Graham 2007), which is a sound proxy for muscle of skipjack. Therefore, SCA data integrates diet over very short time periods and requires continuous sampling to capture seasonal shifts in diet composition, which are captured via isotope analysis given the multi-month isotopic incorporation rate of muscle tissue. The lower and highly variable TP\textsubscript{bulk} observed in adults from the southern area diverged from TP\textsubscript{Glx-Lys}, likely due to the presence of individuals with low $\delta^{15}N_{\text{bulk}}$ values in this group that were not in steady-state with the southern $\delta^{15}N$ baseline (Coletto et al. 2021).

TP\textsubscript{Glx-Phe} estimates were one trophic level lower than TP\textsubscript{SCA}, TP\textsubscript{bulk}, and TP\textsubscript{Glx-Lys}. A similar result was reported for yellowfin tuna by Lorrain et al. (2015),
who suggested that a TDF$_{\text{Glx-Phe}}$ of $\sim7.6\%$ may be too large. Nuche-Pascual et al. (2021) indicated that TDF$_{\text{Glx-Phe}}$ varies with dietary protein content and feeding regime in teleosts, and suggested the use of taxon-specific trophic-source TDF values. We used a lower TDF$_{\text{Glx-Phe}}$ of 5.7$\%$ to estimate TP$_{\text{Glx-Phe}}$ in skipjack based on a large compilation of marine teleosts (Bradley et al. 2015). If we assume estimates of $\beta_{\text{Glx-Phe}}$ (3.6 \pm 0.5$\%$) are robust for phytoplankton-fueled pelagic food webs in the SWAO, then TDF$_{\text{Glx-Phe}}$ for skipjack must be even lower than 5.7$\%$. Similar to patterns in δ^{15}N$_{\text{bulk}}$ discrimination (Trueman et al. 2005), Glx may experience less nitrogen isotope fractionation in rapidly growing skipjack, or alternatively there could be significant trophic-relative fractionation of Phe, which previous work estimates might be as large as 1.5$\%$ in bluefin tuna (Bradley et al. 2014).

5. CONCLUSIONS

This study provides new information on skipjack foraging and movement ecology in the SWAO. The productive southern area supports a high abundance of forage species and large skipjack feeding aggregations. AA δ^{15}N analysis allowed us to separate the effects of foraging across distinct isotopic baselines from changes in TP with ontogeny. The decrease in δ^{15}N$_{\text{Lys}}$ and δ^{15}N$_{\text{Phe}}$ values with increasing skipjack size indicate that fully mature individuals forage in lower latitudes and further offshore than their younger counterparts. Our study advances our understanding of the application of AA-CSIA in pelagic marine ecosystems, showing that Lys δ^{15}N values were a more reliable proxy than Phe for baseline δ^{15}N and that TP estimates based on differences in δ^{15}N values between Glx (trophic) and Lys (source) were more accurate than those derived from Glx and Phe. Stock management strategies should consider that the southern region supports dense aggregations of juvenile skipjack, which appear to use these areas seasonally to enhance growth. If non-selective fishing gear (e.g., purse seining) are used in the future due to economic pressures, monitoring will be critical to control the catch of a minimum size above the size of first maturity. Finally, we encourage future studies applying bulk tissue and AA δ^{15}N analyses to cover the entire latitudinal distribution of the species in the SWAO to provide enhanced insights into skipjack movement and stock connectivity in this region.

Acknowledgements. We thank 3 anonymous reviewers for their valuable suggestions on the early version of the manuscript. We thank L.G. Fischer, C. Monteiro Neto, and researchers from Bonito Project for sampling skipjack in Niterói, and A. Llopart and D. Cortesia for facilitating our samplings at Leal Santos/Rio Grande. Samples were obtained under license SISBio #15787-2, issued to Cassiano Monteiro-Neto, who participated with the ECOPESCA-UFF laboratory team in sample acquisition. This paper is a contribution from Bonito Project, which was supported by an environmental offset measure established through a Consent Decree/Conduct Adjustment Agreement between Petrorio and the Brazilian Ministry for the Environment, with the Brazilian Biodiversity Fund — FUNBIO as implementer. This research is part of the PhD thesis written by J.L.C. under the mentoring of L.A.S.P.M.. and S.B. J.L.C. and S.B. hold grants from National Council for Research and Technological Development (CNPq) (PhD 142398/2016-0 and PQ-2 315365/2020-0, respectively). This research was also supported by the Coordination of Improvement of Higher Education Personnel—Brazil (CAPES), within the Capes-PrInt Program (Financing Code 001, Process # 88887.370655/2019-00).
environments: the coast and sea in the southwestern Atlantic. Springer Verlag, p 171–178

Coletto BC, Nauen CE (1983) FAO species catalogue. Scombrids of the world. An annotated and illustrated catalogue of tuna, mackerels, bonitos and related species known to date. FAO Fish Synop 125

Coletto JL, Pinho MP, Madureira LSP (2019) Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish Oceanogr 28:82–93

Graham BS (2007) Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD dissertation, University of Hawaii at Manoa, Honolulu, HI

Luckhurst BE (2014) Elements of the ecology and movement patterns of highly migratory fish species of interest to

Nuche-Pascual MT, Ruiz-Cooley RJ, Herzka SZ (2021) A meta-analysis of amino acid δ13N trophic enrichment factors in fishes relative to nutritional and ecological drivers. Ecosphere 12:e03570

Schafer KM, Fuller DW (2013) Simultaneous behavior of skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (T. albacares) tunas, within large multi-species aggregations associated with drifting fish aggregating devices (FADs) in the equatorial eastern Pacific Ocean. Mar Biol 160:3005–3014

Troina GC, Riekenberg P, van der Meer MTJ, Botta S, Dehairs F, Secchi ER (2021) Combining isotopic analysis of bulk-skin and individual amino acids to investigate the trophic position and foraging areas of multiple cetacean species in the western South Atlantic. Environ Res 201:111610

Vilela MJA (1990) Idade, crescimento, alimentação e avaliação do estoque de bonito listado, Katsuwonus pelamis (Scombridae: Thunnini), explorado na região sudeste—sul do Brasil. MSc dissertation, Universidade Federal do Rio Grande

Editorial responsibility: Alistair Hobday, Hobart, Tasmania, Australia
Reviewed by: D. Madigan and 2 anonymous referees

Submitted: July 30, 2021
Accepted: March 14, 2022
Proofs received from author(s): May 16, 2022