Periodic Table of the Elements

Main groups								———Main groups									
1 1A																	18 8A
H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218		Transition metals						5 B 10.81	6 C 12.011	7 N 14.0067	o O 15.9994	9 F 18.998403	10 Ne 20.1797			
11 Na 22.98977	12 Mg 24.305	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.98154	14 Si 28.0855	15 P 30.97376	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.41	49 In 114.82	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.33	57 *La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.9804	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0254	89 †Ac 227.0278	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (271)	111 (272)	112 (277)		114 (289)		116 (289)		118 (293)
*Lanthanide series			Ce 140.12	Pr 140.9077	Nd 144.24	Pm (145)	Sm 150.36	Eu 151.96	Gd 157.25	Tb 158.9254	Dy 162.50	Ho 164.9304	Er 167.26	Tm 168.9342	Yb 173.04	Lu 174.967	
[†] Actinide series			90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)	

Naturally Occurring Isotopes in Water

Blue shaded squares are stable and the unshaded squares are unstable (radioactive) nuclides.

Isotope Natural Abundances

Hydrogen Isotopes: 2 stable, 1 unstable (radioactive):

¹H, Protium (H) ²H, Deuterium (D) ³H, Tritium (T) 99.984% 0.0159% 5 x 10⁻⁶%

Oxygen Isotopes: 3 stable, 5 unstable (radioactive):

¹⁶O ¹⁷O ¹⁸O 99.630% 0.0375% 0.1995%

Isotope Natural Abundances

Of nine configurations (isotopologues) of H and O stable isotopes in water, only three make up the large majority on Earth:

> ¹H¹H¹⁶O - most common (highest vapor pressure) ¹H¹H¹⁸O - less common ¹H²H¹⁶O - least common

Isotopologues = identical compounds that differ in isotope composition. $(^{1}H^{1}H^{16}O \text{ vs. }^{1}H^{1}H^{18}O \text{ vs. }^{1}H^{2}H^{16}O)$

Water Isotope Partitioning by Hydrologic Pools & Fluxes

Water Isotope Partitioning by Hydrologic Pools & Fluxes

Values are $\delta^{18}O$

What about MAGNITUDE, MIXING, and MEASUREMENT?

5 Water World Rules to Remember

Expect fractionation during phase changes (liquid 🛶 vapor)

Temperature will impact isotopic composition (lower temps = larger isotopic effects)

The isotopic composition of any water is a result of fractionation, mixing, or both.

Always anticipate that both equilibrium and kinetic fractionation effects may be at play.

Biology can influence isotope values of water too.

Stable Isotope Expression: Delta (δ) Notation

[(R_{sample} / R_{standard}) -1] is a small number. multiplying value by 1000 allows us to express the value in **per mil**. (parts per thousand or **%**)

Delta notation is a "difference" or relative expression in relation to a standard. So, an isotope ratio in the sample equal to the standard means $R_{sample}/R_{standard} = 1$ or $\delta R = 0$. International Atomic Energy Association (IAEA) maintains these reference standards.

International Reference Standards

lsotope System	Ratio	IAEA Reference Standard	Standard Abundance Ratio
² H	² H/ ¹ H	V-SMOW : (Vienna-Standard Mean Ocean Water)	155.76 x 10 ⁻⁶
¹⁸ O	¹⁸ O/ ¹⁶ O	V-SMOW: (Vienna-Standard Mean Ocean Water)	2005.2 x 10 ⁻⁶

Reference standard was originally called SMOW but is now called V-SMOW.

Measurements are calibrated to other international standards that span a wide range of values.

Other International Standards

Abbreviation	Standard Name	$\delta^2 H_{VSMOW}$	$\delta^{18}O_{VSMOW}$	
V-SMOW	Standard Mean Ocean Water	0‰	0‰	
SLAP	Standard Light Antarctic Precipitation	-428.0‰	-55.5‰	
GISP	Greenland Ice Sheet Precipitation	-189.7‰	-24.8‰	
NBS-1	National Bureau of Standards (NBS) 1	-47.1‰	-7.9‰	
NBS-1A	National Bureau of Standards (NBS) 1A	-183.2‰	-24.3‰	

For the most part, this course is concerned with TWO main processes that have isotope effects:

Questions?

Mixing

A process that combines different <u>substrates</u> into a <u>product</u> (the making of a homogeneous whole – e.g., baking)

Fractionation

A process that occurs during chemical reactions when the abundances of the heavy isotopes in the <u>substrate</u> are different than the abundances of the heavy isotopes in the <u>product(s)</u>

> Isotope Fractionation Factor: $\alpha_{A-B} = R_A/R_B$ (A and B are substrate and product respectively)

Isotope Enrichment Factor: $\varepsilon_{A-B} = (\alpha - 1) \bullet 1000 \%$

Types of Fractionation

Exchange or Equilibrium

- Complete back-reactions occur
- Product and reactant offset by constant fractionation factor (α)

Kinetic (Non-Equilibrium)

- Incomplete back-reactions or none occur
- Product and reactant δ values can evolve in concert (closed system), or reactant composition determines product composition (open system)

Transport or Diffusive (Non-Equilibrium)

- Can be thought of as a special case of kinetic fractionation along a flux/concentration gradient
- Incomplete back-flux is a necessary condition

Examples of Fractionation Types

Exchange or Equilibrium

- Liquid droplet formation from vapor in clouds (rain!)
- Evaporation at the boundary layer (100% RH) of water body (ocean/lake)

Kinetic

- Mineral precipitation out of magma
- Evaporation of waters (<100% RH)
- Biosynthesis of compounds (enzyme-mediated)

Transport or Diffusive

- Diffusion through boundary layer over water, out of leaves, through soils

During any fractionation event these are NOT mutually exclusive.

For water, it is very common to have both equilibrium and kinetic fractionation occur as water cycles and moves.

Rayleigh Fractionation (Distillation)

What is this Process?

- Fractional distillation of liquids.
- Exponential relationship describing isotope partitioning between two reservoirs as one reservoir decreases in size.

Assumptions

- Material is continuously removed from a mixed system containing molecules of two or more isotope species (e.g., H2O with ¹⁸O and ¹⁶O).
- Fractionation accompanies the removal process and at any instance is described by the fractionation factor alpha (α).
- Alpha (α) does not change during the process.

Rayleigh Fractionation in Action: Monsoon!

Rayleigh Fractionation in Action: Monsoon!

Accumulation of Light Isotopes ¹H¹H¹⁶O Liquid <-> Vapor (equilibrium mixture)

Liquid ¹H²H¹⁸O Accumulation of Heavy Isotopes Rayleigh Fractionation (Distillation)

$R_{t} = R_{0} f^{(1-\alpha)}$

R_t and R₀ are the ratios at time "t" and zero (initial)
 f is the fraction remaining at t
 α is the fractionation factor between water and vapor

Rayleigh Fractionation from Rainfall (Condensation)

BOTH δ_{prod} and δ_{react} become progressively lower as "f" changes.

Clark and Fritz 1997

Questions?

Equilibrium Fractionation Factors for Water Isotopes (Vapor to Liquid)

- @ 20°C
 - $\epsilon^2 H_{v-1} = 74\%$
 - $\epsilon^{18}O_{v-1} = 9.2\%$
 - $\epsilon^{2}H / \epsilon^{18}O = 8.0$
- @ 80°C
 - $\epsilon^2 H_{v-1} = 38\%$
 - $\epsilon^{18}O_{v-1} = 4.5\%$
 - $\epsilon^{2}H / \epsilon^{18}O = 8.4$
- Mass Differences
 - $(^{2}H {}^{1}H) / {}^{1}H = 1$
 - $(^{18}O ^{16}O) / ^{16}O = 0.125$
 - 1 / 0.125 = <mark>8.0</mark>

Equilibrium fractionation factors for hydrogen isotopes are ~8x those for oxygen isotopes Global Meteoric Water Line (GMWL)

Condensation in the real world is an equilibrium process!

Intercept of +10‰?

Looking at Equilibrium and Kinetic Fractionation Together

- Open Air
 - Large and Well-Mixed
 - RH<<100%
- Transition Zone (TZ)
 - Turbulently Mixed <100% RH
 - Decreasing Humidity Upwards
- Boundary Layer (BL)
 Thin and Well-Mixed (100% RH)
- Liquid
 - Large (ocean) or Small (droplet)
 - Mixed or Stratified

Looking at Equilibrium and Kinetic Fractionation Together

Why Doesn't GMWL Intercept 0?

The *d*-excess of precip-2 > precip-1

d-excess = $\delta^2 H - 8 X \delta^{18} O$

Deuterium Excess (d)

Clark and Fritz 1997

Looking at Equilibrium and Kinetic Fractionation Together

The net ratio of ²H and ¹⁸O isotope effects is a blend of the equilibrium and kinetic slopes, typically between 3 and 8.

The coupled ²H and ¹⁸O system gives us a "proxy" for kinetic fractionation, **deuterium excess**, which is driven by humidity.

Larger deuterium excess = higher or lower humidity?

Deuterium Excess (d)

d of seawater (SMOW) is $0 - 8 \times 0 = 0$ %

Clark and Fritz 1997

Precipitation Deuterium Excess and Relative Humidity

Craig–Gordon Model

Brings both equilibrium and kinetic effects together to show isotope evolution during phase changes of H₂O:

$$\delta_{vapor} = \delta_{liquid} - h_{air} \times \delta_{awv} - \alpha_{eq} - (1 - h_{air}) \times \alpha_k / 1 - h_{air}$$

- α_{eq} equilibrium fractionation factor (1.009)
- α_k kinetic fractionation factor (1.0285)
- h_{air} humidity [vapor pressure of water] in air
- δ_{awv} molar ratio of ¹⁸O/¹⁶O (or ²H/H) of atmospheric water vapor

Questions?

Spatial Variability of Oxygen Isotopes in Hydrologic Fluxes

GNIP: Global Network for Isotopes in Precipitation

http://isohis.iaea.org

First Year of δ^{18} O Observation

) 1960-69 (n = 134) 🔵 1970-79 (n = 47) 🔵 1980-89 (n = 101) 🔵 1990-00 (n = 66) 🛑 2007-20 (n = 23)

Stable Isotopes in Precipitation

www.waterisotopes.org

Processes Behind Patterns?

Dansgaard 1964, Rozanski et al. 1993

The Continental Effect

Precipitation isotope δ values decrease towards continental interior.

Reflects the fact that vapor is sourced from the oceans, rains out over the continents, plus winter precipitation (snow) is formed at colder temperatures.

Continental Effect: Latitude and Altitude

Bowen and Wilkinson 2002

North American δ^2 H Isoscape

Distillation in Action Latitude Effect Altitude Effect Continentality

Bowen et al. 2005

The Amount Effect

Precipitation isotope δ values decrease with increasing amounts of rainfall (rain out).

Generally follows the predictions of a Rayleigh model forced by lapse rate of cooling airmass.

Source Areas

Atmospheric Circulation – North America

Variability in moisture source needs to be considered as another effect governing local precipitation isotope values

Example: North American Monsoon

