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Abstract 

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the ex- 
tended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research 
in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA pro- 
vides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for 
evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of in- 
formation about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. 
The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective stud- 
ies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, 
reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration. 
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evolutionary and ecological processes that drive biodiversity ac- 
cumulation and loss, fundamental shifts in nutrient and ma- 
terial fluxes, and biotic interactions that shape food webs and 
ecosystems. By examining these attributes within and among 
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Specimens archived in biodiversity collections are unique to a
place and time. Contained within these specimens are elements
and molecules that can be interpreted through first principles
of biology, chemistry, and geosciences to provide insights into
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iodiversity collections, researchers can make comparisons over
patial and temporal scales that encapsulate critically important
cological and societal changes related to an increasingly human-
ominated world. In the present article, we explore the potential
or assessing ecological change in freshwaters across the conti-
ental United States using fish specimens contained in regional
iodiversity collections by employing stable isotope analysis (SIA)
f the most abundant elements in organic matter. Stable isotope
alues of carbon ( δ13 C), nitrogen ( δ15 N), hydrogen ( δ2 H), and oxy-
en ( δ18 O) provide glimpses into the environmental and physiolog-
cal state of organisms that can be readily integrated along with
ther environmental data to assess the drivers of change in abi-
tic and biotic conditions. 
Over the last century, climate change, land-use change (e.g.,

griculture, urbanization), hydrologic alteration, habitat fragmen- 
ation, invasive species, and pollutants have altered ecosystem
unction in nearly all freshwaters on Earth, resulting in dispro-
ortionately large losses of biodiversity. Using collections to un-
erstand the trends, causes, and consequences of radical ecologi-
al change is hardly new. Museum collections have long been used
o assess trends in the bioaccumulation of mercury, trace metals,
nd other pollutants across gradients of environmental change,
abitat, trophic position, interspecific variation, and physiology
Evans et al. 1972, Gibbs et al. 1974 , Hill et al. 2010 , Levengood et al.
013 ). However, the development of SIA and large-scale environ-
ental databases and observatories, coupled with the digitization
nd georeferencing of biodiversity collections, expand the spatial
nd temporal scope of inquiry and permit synthesis across time,
lace, organismal state, and environmental context using collec-
ions from the United States and throughout the globe. 
This article emerged from a workshop (organized by HLB,

HM, and TFT) that explored the role of regional fish collections
n supporting long-term ecological research in freshwaters. Al-
hough the focus of the workshop was the integration of mu-
eum specimens with SIA and long-term environmental data, this
pecimen-centered approach is conducive to other lines of investi-
ation (Lendemer et al. 2020 ). New analytical approaches and data
ets permit aggregation of specimen-associated data on unprece-
ented scales that, in turn, allow for retrospective and prospective
uantitative analysis of biotic responses to human-mediated and
atural changes over time and space. 

egional fish collections and environmental 
hange 

ystematic studies of biodiversity are generally focused on re-
earch collections at large, free-standing museums because of
heir age, size, taxonomic breadth, international scope, and the
umbers of primary type specimens they hold. However, regional,
sually university-based collections are proving to be more impor-
ant resources for ecological and environmental research because
f their focus on local and regional biotas repeatedly sampled over
ultiple decades. The uniqueness of these collections for use in

he research program we are proposing lies in the fact that they
ften archive large numbers of samples of abundant and ecolog-
cally relevant species ideal for robust ecological analysis. 
The first university-based biodiversity (i.e., natural history) col-

ections began in the mid-1800s in the United States (table 1 ), and
any experienced exponential growth starting in the late 1940s,
eaking in the early 2000s (figure 1 ). This activity parallels a time-
ine of major changes to watersheds and a period of unprece-
ented environmental regulation in the United States (table 1 ) .
arly collections focused on regional watersheds (e.g., Upper Mis-
issippi River, Great Lakes), but roughly 80% of the specimens rep-
esent Gulf Coastal drainages in the southeastern United States,
outhwestern United States, and the upper Colorado River Basin
figure 2 ). The underrepresented regions of the United States in-
lude New England and the Mid-Atlantic states (figure 2 ). These
ifferences in sample availability will necessarily limit the gran-
larity and temporal depth of inquiry. 
Sustaining the value of collections as a continent-wide re-

ource for ecological and environmental research depends crit-
cally on continued collection and curation of samples from re-
ional biotas and ensuring the accessibility of this material to the
cientific community. Digitization and georeferencing of collec-
ion records, and the increasing numbers of online biodiversity
ata portals (e.g., FishNet2, iDigBio, GBIF) facilitate researcher ac-
ess to specimens in this context. Specimen records from smaller,
ore focused collections are also coming online and being inte-
rated with data in existing biodiversity portals, expanding the
emporal and spatial breadth of available samples. Another crit-
cal issue for sustaining the utility of regional collections as a re-
ource for ecological and environmental research is expanding
unding for facilities, staff, and curatorial care of specimens in bio-
iversity collections (National Academies of Science, Engineering,
nd Medicine 2021 ). 

table isotopes, ecology, and biodiversity 

ollections 

IA has been used for decades by geochemists to study atmo-
pheric, rock, climate, and water cycles on contemporary and geo-
ogical time scales (Sharp 2017 , Bowen et al. 2019 ). Likewise, biotic
rocesses such as photosynthesis, decomposition, heterotrophic
onsumption, and organismal metabolism influence the isotopic
omposition of biological materials in characteristic ways that
ake them natural tracers for dynamic ecological and environ-
ental processes (Fry 2006 ). In ecology, SIA builds on biogeochem-

cal principles to provide a means to study primary production,
ecomposition, consumer resource use, trophic niches, migratory
atterns, as well as nutrient and material fluxes through commu-
ities and ecosystems. 
SIA on fluid-preserved fishes held in biodiversity collections

ould yield powerful insights into the causes and consequences of
atural and human-caused disturbances on aquatic ecosystems
ver decadal time scales, help identify priorities for restoration,
nd provide a means for assessing its efficacy. Combining isotopic
ata from multiple biodiversity collections has the potential to
ocument the historical and contemporary ecological impacts of
ational and global policies on clean air, water, and endangered
pecies protection at local, regional, and global scales (table 1 ).
elow, we examine possibilities and challenges of integrating the
nited States (and global) network of biodiversity collections and
IA to study biogeochemical and ecological change over broader
patiotemporal scales than ever before. 

he Extended Specimen Network and SIA 

iodiversity collections are in the middle of a scientific renais-
ance fueled by emerging technologies, digitization and digital
ata aggregation in biodiversity portals, and big data analyt-
cs (National Academies of Sciences, Engineering, and Medicine
021 ). Information contained in specimens is extended through
aterials analysis and links to specimen-derived or related ge-
etic, phenotypic, behavioral, environmental, and physical data.
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Figure 1. A histogram superimposed on a cumulative distribution (the solid dark line) of georeferenced lots plotted by decade for the 10 most 
abundant freshwater fish species identified in Fishnet2 ( https://fishnet2.net ), a data portal and aggregator for US fish collections. The term lot refers to 
a sample of specimens of a particular species collected at the same place and time and cataloged as a unit. Important time blocks and transitions are 
identified by events (text) that correspond to the summary processes column in table 1 . 

Figure 2. Spatial distributions of georeferenced lots for the 10 most abundant freshwater fish species, aggregated within time frames that correspond 
to those identified in table 1 and figure 1 . The Panels represent time frames (a) from before 1900 to 1930, (b) 1931–1965, (c) 1966–1999, and (d) from 

2000 to the present. The dark lines and numbers demarcate major watershed areas of the continental United States. Georeferenced lots were 
identified in Fishnet2 ( https://fishnet2.net ), a data portal and aggregator for US fish collections. 
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This concept is articulated in the Extended Specimen Network
(ESN; Lendemer et al. 2020 ), which multiplies the power of SIA
as a tool to study biogeochemical and ecological change. There-
fore, the ESN proposes that isotopic data obtained from an indi-
vidual specimen or lot held in a museum collection is a primary
extension (figure 3 ), where isotope values of different elements
yield direct insight into sources of food and nutrients ( δ13 C, δ15 N,
δ2 H, δ34 S), water sources and temperature ( δ2 H, δ18 O) and migra-
tion history ( δ2 H, δ18 O, δ87 Sr) of a particular specimen (figure 3 ).
Tissues experience different rates of isotopic turnover, depending
on their physiology, such that accretionary mineralized structures
(e.g., otoliths or vertebrae) continuously record information over
a lifetime, whereas more metabolically active tissues (e.g., liver
or muscle) integrate isotopic change over weeks to months. Be- 
yond bulk tissues, SIA of individual compounds such as amino 
and fatty acids provide deeper insights into physiological (e.g., ni- 
trogen balance) and ecological (e.g., food chain length) processes 
(McMahon and McCarthy 2016 , Ohkouchi et al. 2017 , Whiteman
et al. 2019 , and see below). Morphometrics and specimen imag- 
ing link the “isotopic niche” (Newsome et al. 2007 ) to morpho-
logical and anatomical variation within and among species in a 
community. SIA of bycatch and gut contents (e.g., invertebrates) 
could provide insight into trophic structure of other community 
constituents. 

Field notes, environmental data collected at the time of cap- 
ture, photographs, and other documentation aid interpretation of 

https://fishnet2.net
https://fishnet2.net
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Figure 3. The Extended Specimen Network multiplies inferential and explanatory power of stable isotope analysis (SIA), and SIA contributes 
fundamental insight into community and ecosystem changes that can be integrated with other data inherent to the specimen. The extensions 
represent changes in scale of inference and additions of other data. Because SIA provides a record of change in units (e.g., delta values, δ) linked 
explicitly with biogeochemical processes, it can be directly integrated into other hydroclimatic data sets. The primary extension is stable isotope ratios 
of various elements that can be used to infer ecological processes and the physiological state of the specimen at the time and place of capture. The 
secondary extension puts isotopic data into the biological context of the population or community. The tertiary extension maps isotopic ratios of 
organisms, communities, and other biotic and abiotic drivers onto spatial landscapes with a time axis that can span decades. 
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sotopic data. Therefore, individual specimens and their associ-
ted data (i.e., the extended specimen) reveal tremendous infor-
ation about multiple processes at a particular time and place.
or example, external and internal parasites can be analyzed
o understand trophic interactions in host–parasite associations
Kanaya et al. 2019 ) and gut content data can be integrated with
IA to quantify isotopic baselines and ontogenetic and seasonal
ietary changes (Davis et al. 2012 ). Biological context and inter-
retation are derived from analyzing many specimens across pop-
lations, species, time, and space to produce a secondary exten-
ion of the preserved material. Linking aggregated isotopic data
ith other physical data sets, such as river discharge, pollutant
missions, appearance of invasive species, or climate data, per-
its the evaluation of ecosystem processes and their trajectories
ver large spatiotemporal scales and represents a tertiary exten-
ion of specimen data (figure 3 ). 

ong-term perspectives for aquatic 
cosystem change 

he power of combining SIA and biodiversity collections is that it
aptures changes in ecosystem processes that can take decades
r centuries to manifest. Retrospective analyses provide the kinds
f multidecadal perspective necessary to identify environmental
tressors or releases that may generate time-lagged, nonlinear, or
radual ecological responses to examine major drivers of change
hat occurred historically and persist into the present day. Once
hey are developed, these ecological timelines serve as a basis for
eveloping targets for environmental policy or specific restoration
ctions and create a means to forecast and assess progress toward
ntended goals and outcomes. Longer timelines provide better in-
ormation for predicting the impacts of continued environmen-
al change and informing more mechanistic models of climate
hange effects. 

ocal processes 
entral to understanding the impact of disturbances over time
s the study of energy flow pathways and trophic interactions
mong species (Rooney and McCann 2012, Sagouis et al. 2015 )
nd species–environment relationships (Delong and Thoms 2016 ).
or example, Pruell and colleagues ( 2003 ) used SIA to character-
ze archived scale samples collected between 1982 and 1997 to
dentify the mechanisms underlying a dietary shift in striped bass
 Morone saxatilis ) in the Chesapeake Bay. Increasing δ13 C values in
oth striped bass and their benthic prey coincided with decreases
n pelagic prey availability (Overton et al. 2000 ). Similarly, wall-
ye ( Sander vitreus ) shifted its diet in response to extirpation of
ts primary prey, pelagic gizzard shad ( Dorosoma cepedianum ) in
ebraska reservoirs (Bethke et al. 2012 ). SIA is also a powerful
ool for understanding the complex ecological effects of invasive
pecies (for a review, see McCue et al. 2020 ). Vander Zanden and
olleagues ( 2003 ) used SIA of fishes and invertebrates sampled
ver a 120-year time series to document how eutrophication and
ntroductions of nonnative lake trout ( Salvelinus namaycush ) and
ysid shrimp changed the Lake Tahoe food web, ultimately lead-

ng to the extirpation of a native cutthroat trout. Similarly, histor-
cal fish collections (1974–2008) were used to track changes in the
iets, biomass, and trophic structure of the native fish assemblage
n the Wabash River prior to and during establishment of invasive
arp in the 1990s (Schaus and Vanni 2000, Sampson et al. 2009 ).
IA and stomach contents data refuted the hypothesis that direct
egative interactions with invasive carp led to a collapse of gizzard
had in this waterway (Pyron et al. 2017 ). Instead, increased nutri-
nt loading and disturbance forced the decline of the gizzard shad
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population, leaving a vacated niche that facilitated expansion of
invasive carp (Pyron et al. 2017 ). 

Regional processes 
Local stream reaches and lakes are nested within watersheds, the
spatial scale at which species and communities respond to envi-
ronmental changes (i.e., flow regime, land use; Poff 1997 , Fausch
et al. 2002 ). Comparisons using SIA of serial collections within
and across river basins yield insight into ecological responses
that are missed by documenting changes in species composition
alone (e.g., Ruhí et al. 2016 ). For example, Delong and colleagues
( 2011 ) found that the trophic diversity of Missouri River fish as-
semblages decreased following the onset of dam operations in
the 1950s, likely because of resource limitation imposed by di-
minished river connectivity. Turner and colleagues ( 2015 ) found
that community-wide trophic niche space declined with river in-
cision and sediment deprivation over 70 years of river regulation
in the Rio Grande, New Mexico. Reduced flooding and urbaniza-
tion facilitated a shift toward greater reliance on instream energy
sources (i.e., benthic algae) for the entire fish community. Simi-
lar work in Australian rivers documented homogenization of re-
source use by aquatic consumers following extensive water de-
velopment (Thoms and Delong 2018 ). Bowes and colleagues ( 2020 )
used compound-specific SIA of individual amino acids to demon-
strate long-term changes in trophic positions of fishes driven by
changes in habitat structure after addition of low-head dams and
levees in the Ohio and Mississippi Rivers. 

Global processes 
For decades, environmental scientists have used biodiversity
collections to study ecological effects of pollutants (Suarez and
Tsutsui 2004 ). The earliest studies in the 1970s compared mercury
concentrations in contemporary fish with those in specimens
collected in the late 1800s (Barber et al. 1972 , Evans et al. 1972 ).
Since that time, biodiversity collections have been employed to
examine changing pollutant emission histories over decades to
more than a century (Drevnick et al. 2007 , Lepak et al. 2019 )
on a global scale. This is because specimen archives expand
spatial coverage to undersampled regions globally and permit
the evaluation of how concentrations relate to regional variation
in contaminant loads or transport (Tanabe and Ramu 2012 ). For
example, specimen archives allowed researchers to infer the dis-
tributions of persistent organic pollutants and contaminants of
emerging concern from coastal waters in southern India to cen-
tral Japan (Tanabe and Ramu 2012 ). This information identified
where modern contaminant sources persist and permitted the
identification of contaminant-specific transport mechanisms. In
freshwater ecosystems, combining environmental contaminant
analyses with SIA has been used to identify the mechanisms
and pathways of contaminant accumulation and transport. For
example, Drevnick and colleagues ( 2007 ) used SIA with mercury
data from northern pike to challenge the hypothesis that changes
in trophic position were related to observed declines in fish
mercury concentration. Lepak and colleagues ( 2019 ) used similar
methods to demonstrate that invasive mussels in Lake Michigan
facilitated shifts in energetic and trophic pathways to lake trout
that, in turn, led to altered rates of mercury accumulation in
that species. Using mercury SIA, Lepak and colleagues ( 2019 ) also
showed how US policy-driven reductions in mercury emissions
resulted in rapid changes in the mercury isotope ratios measured
in lake trout. These examples illustrate how species interactions,
including invasive species, water flow regulation, and pollutants,
have effects that are mediated through ecosystem change,
environmental policy, and biotic interactions. 

Ecological restoration 

Retrospective analysis with biodiversity collections and SIA iden- 
tify important changes to ecosystem processes. Purposeful spec- 
imen collections made before, during, and after restoration 
projects can be used to evaluate outcomes. The underlying goals 
for many restoration programs are endpoint based and aim to re- 
cover historical conditions of an ecosystem (Osenberg et al. 2006 ,
Vander Zanden et al. 2006 ). The selection of appropriate restora- 
tion endpoints is hampered by the lack of relevant historical data,
which often leads to speculation about predisturbance or refer- 
ence conditions (Vander Zanden et al. 2003 , 2006 ). SIA-enabled 
reconstruction of food webs provides insight into predisturbance 
conditions, historical trophic links, and pathways of energy flow 

(Palmer et al. 1997 ). Other restoration programs aim to produce
an effect of a specified magnitude (e.g., increase population size 
by 30%; Osenberg et al. 2006 ) and are effect-size based, where ef-
fect sizes are quantified using before–after–control–impact (BACI) 
approaches (Osenberg et al. 2006 , Conner et al. 2016 ). Although 
the BACI method is a powerful tool for quantifying restoration 
effects, it is difficult to implement because of the post hoc na-
ture of many restoration monitoring efforts (Osenberg et al. 2006 ,
Palmer et al. 2014 ). Biodiversity collections can provide the pre- 
treatment data required to complete BACI analysis. For projects 
that aim to restore ecosystem processes by reestablishing biodi- 
versity through functional redundancy (Palmer et al. 1997 ), biodi- 
versity collections and SIA provide information on species-specific 
habitat use in an historical ecosystem context. In all cases, SIA 

and biodiversity collections can provide the historical reference 
or pretreatment conditions critical for understanding the full ef- 
fect of ecological restoration. 

Challenges and uncertainties 

To reconstruct ecological timelines, preserved specimens must 
be physically comparable (species, size, and age), the effects of 
preservation on response variables should be well documented,
and there must be sufficient data for valid statistical inference 
(Evans et al. 1972 ). There are important effects of chemical fix-
ation and preservation on sample integrity for both SIA and 
the characterization of pollutants. Preservative media may be 
changed over the life of a specimen (e.g., exchanging isopropanol 
for ethanol), which could impose additional effects. Experimental 
studies report alteration of δ13 C and δ15 N values of chemically pre-
served bulk tissue samples relative to fresh or frozen tissues (e.g.,
Arrington and Winemiller 2002 , González-Bergonzoni et al. 2015 ),
although consensus across studies is difficult to reach because of 
the variability in preservation and experimental methods. Biodi- 
versity collections often hold tissues in different conditions (e.g.,
frozen versus fixed in formalin), potentially allowing for direct ex- 
amination of preservative effects on pollutant concentrations and 
stable isotope values on a case-by-case basis. Broader compar- 
isons will be important for combinability of isotopic data across 
collections, but preservation-induced shifts are often small (at 
least 1 per thousand) relative to isotopic shifts driven by ecosys- 
tem changes or trophic fractionation (Edwards et al. 2002 ). More- 
over, shifts in carbon (C) and nitrogen (N) ratios were realized 
immediately and remained stable following formalin fixation and 
ethanol preservation (Edwards et al. 2002 ). 
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Interpretation of bulk tissue isotopic data in a food web or
cosystem context usually requires information about δ13 C and
15 N values of primary producers, referred to as baseline values
e.g., Peterson and Fry 1987 , Post 2002 , Fry 2006 ). SIA on identifiable
ut contents from museum specimens can be used to establish
uch baselines (Bishop et al. 2014 ), but fixation and preservation
ay differentially affect isotope values in plants and inverte-
rates. In cases in which historical baselines are not available,
ssential amino acid (e.g., isoleucine, leucine, valine, threonine,
henylalanine, lysine) δ13 C and δ15 N analyses can help constrain
sotopic variation in primary producers through space and time.
his is because heterotrophic consumers cannot synthesize
ssential amino acids de novo; they must acquire them directly
rom their diet, such that the essential amino acid δ13 C values of
onsumer tissues closely mirror those of basal producers (McMa-
on et al. 2015 ) or symbiotic gut microbes (Newsome et al. 2011 ,
020 ). Primary producers display variable isotopic discrimination
uring de novo essential amino acid synthesis, providing distinct
ultivariate essential amino acid δ13 C fingerprints (Scott et al.
006 , Larsen et al. 2013 ) that are spatiotemporally conserved
Elliott Smith et al. 2022 ) and can reliably distinguish among
istinct autochthonous (algae) and allochthonous (terrestrial 
lants) primary producers (Besser et al. 2022 ). Because of low
requencies of transamination during nitrogen metabolism 

O’Connell 2017 ), the δ15 N values of some essential amino acids
phenylalanine and lysine), also known as source amino acids, in
onsumer tissues are minimally altered as they move up food
hains, providing a metric for baseline δ15 N values (McMahon
nd McCarthy 2016 , Ramirez et al. 2022). Source amino acid δ15 N
alues can be used in conjunction with the δ15 N values of trophic
mino acids, which undergo substantial transamination during
onsumer metabolism and therefore display significant trophic
iscrimination moving up food chains, to estimate consumer
rophic level from a single tissue sample (Popp et al. 2007 , Choy
t al. 2012 ). Tissue fixation and preservation also affect the
sotopic composition of individual compounds, but some studies
eported no differences in amino acid values between frozen and
uid-preserved fish (Hetherington et al. 2019 , Chua et al. 2020 ,
urante et al. 2020 ), whereas others reported stabilization of
ifferences between frozen and preserved samples (e.g., Welicky
t al. 2021 ). Other sources of temporal isotopic variation, such as
hanges in atmospheric δ13 C values caused by increased fossil
uel emissions, known as the Seuss effect , can be corrected in a
ystematic fashion over time (e.g., Dombrosky 2020 ). 

parse and uneven sampling in time and space 

nferential power of SIA is positively related to replication and bal-
nce within and among groups to be compared across space and
ime. Regional biodiversity collections can be sporadic in coverage
f space or time because historical sampling events were oppor-
unistic, and contemporary sampling can be limited by the avail-
bility of collections space and resources. Pooling samples into
unctional groups or guilds offers some ability to balance sam-
le sizes across groups given that SIA provides robust informa-
ion on functional roles and trophic diversity. Meta-analysis of
IA data could be used to compare groups where data are tem-
orally sparse (Ishikawa and Finlay 2012 , Orton et al. 2014 ). Es-
imated marginal means can adjust for unbalanced data sets by
eighting (e.g., Stets et al. 2020 ). Geospatial interpolation methods
e.g., spatiotemporal regression kriging, Ruybal et al. 2019 ; random
orest machine learning, Oczkowski et al. 2016 ; integrated nested
aplace approximation, St. John Glew et al. 2019 ) can be applied to
ll spatiotemporal data gaps. Another approach to inferring eco-
ogical change in freshwater systems with sparse data might be to
reate a post hoc BACI design by selecting samples that bracket a
isturbance in space and time. Although sampling may be unbal-
nced, establishing pre- and postdisturbance measurements can
e informative even if traditional statistical analysis is limited by
ample size or sampling design. 

ntegration of SIA and environmental data 

he key to harnessing the power of SIA and museum collections is
 centralized, searchable repository for isotopic data that links to
igitized data. The IsoBank Database Project ( http://isobank-qa.
acc.utexas.edu ) is developing this resource to enable a broad SIA
ommunity to capitalize on data analytics (Pauli et al. 2017 ). It is
specially useful for studies using biodiversity collections because
t allows extensive searches for samples with similar time and
pace identities that can improve inferential power of specimen-
pecific isotope data. IsoBank will also be linked directly with
patiotemporal metadata in established collection management
ools (e.g., Arctos). Much like the Genbank database for DNA se-
uence data, Isobank is expected to accelerate interactions across
ollections, museums, and scientific disciplines with a common
hemical language and facilitate the same diverse, interdisci-
linary approaches that have resulted in some of the biggest and
ost creative advances in science. IsoBank will also establish and
nhance standards for data quality assurance and control by cre-
ting a network among core isotope laboratories that are currently
roducing millions of new data points per year (Oliver Shipley,
niversity of New Mexico, Albuquerque, New Mexico, USA, per-
onal communication, 12 March 2023). Finally, IsoBank is poised
o address growing initiatives of publication and funding agencies
or data accessibility and transparency, standards that biodiver-
ity collections have been developing for decades. 
Once it was populated, the Isobank database can be queried

n the context of temporal and spatial trends by integrating SIA
ata with environmental data. Environmental data, including
emote sensing data, are abundant and accessible but underused
n conservation monitoring because of a lack of simple tools
hat can be used to identify and quantify land-cover changes
nd habitat loss (Willis 2015 , Evans and Malcom 2020 ). With
dvances in remote sensing technology, data-intensive cloud
omputing and advanced statistics, artificial intelligence and
achine learning, analyses of large data sets allow exploration of

mportant ecological questions associated with species distribu-
ions, differences between fundamental and realized niches, and
pecies interactions along disturbance and climate gradients.
ata science approaches can facilitate inquiry across disciplines
uch as ecology, hydrology, geomorphology, and biogeochemistry
n the effects of changing climate, anthropogenic stressors, and
atural disturbance regimes on biodiversity. Open-source GIS
nd automated analytical tools could accelerate the application
f remote sensing to monitoring and identification of underlying
actors in biodiversity declines (Evans and Malcom 2020 ). 
River discharge, water temperature, nutrient composition, and

ontaminants are fundamentally important to the distribution,
ersistence, and behavior of freshwater organisms. Accordingly,
rganismal responses tend to covary with these environmental
onditions, with SIA proving valuable in documenting organism
nd ecosystem responses to environmental variation (Finlay 2001 ,
urner et al. 2015 ). Because of the historical nature of natural
istory collections, museum specimens provide a unique and
owerful opportunity to investigate species responses to both

http://isobank-qa.tacc.utexas.edu
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Box 1. Inference models for SIA and biodiversity collections.

A commonly used isotopic niche method (Newsome et al. 2007 ) was initially developed by Bearhop and colleagues ( 2004 ) and ex- 
tended into a hypothesis-testing framework using geospatial statistics (Layman et al. 2007 ), resampling (Turner et al. 2010 ), Bayesian 
(Jackson et al. 2011 ), and kernel density (Eckrich et al. 2020 ) approaches. Isotopic niche is measured as dispersion of carbon ( δ13 C) 
and nitrogen ( δ15 N) isotope values in bivariate space, and was expanded to accommodate more dimensions with additional isotopes 
(e.g., δ2 H; Cucherousset and Villéger 2015 , Bowes et al. 2017 ), to allow explicit consideration of physiological processes (Yeakel et al. 
2016 ), and to provide metrics to quantify and compare trajectories change in multidimensional isotopic niches in time and space 
(Sturbois et al. 2022 ). 
Natural and anthropogenic disturbances sometimes cause ecological conditions to shift through a threshold to one or more alter- 
native stable states, creating a situation where a different ecological state exists for the same environmental conditions (Delong 
et al. 2021 ). Change-point or breakpoint analyses can detect changes that occur in a time series (Zeileis and Hortorn 2002 ). Sudden, 
distinct changes in the direction or sign of the slope in the cumulative sum plot indicates potential change points that are confirmed 
by resampling (bootstrapping) (Taylor 2000 ). 
For network models, because the fundamental dynamic qualities of natural communities, trophic interactions can be highly variable 
through time (Holme and Saramäki 2012 ), and this should be reflected in the topology of networks (Boccaletti et al. 2006 , Morueta- 
Holme et al. 2016 , Scholtes et al. 2016 , López et al. 2018 ). One solution is to create a trophic network model where the in-degree 
represents the number of prey consumed by each predator (also called generality), whereas the out-degree represents the number 
of predators attacking each prey (also called vulnerability; Newman 2003 , Lurgi et al. 2012 , López et al. 2018 ). Another approach 
is the use of nondeterministic network dynamics models that are based on combinations of chance (randomness) and necessity 
(system constraint; Mullon et al. 2009 , Planque et al. 2014 ). 
Structural equation modeling (SEM), or path analysis, is a multivariate technique that can test for the nature and magnitude 
of direct and indirect effects of multiple interacting factors (Grace et al. 2010, Lefcheck 2016 ). SEM is an approach that interprets 
information about observed variables and hypothesized causal pathways in order to evaluate complex causal relationships (Shipley 
2000 , Grace 2008 ). SEM is particularly well suited for large-scale observational community or population data sets, like those of 
museum specimens’ metadata and associated stable isotope signatures. Its intuitive connection to how we conceive of our study 
systems makes it a powerful and useful technique for ecologists and evolutionary biologists (Mitchell 1992 ). 
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spatial and temporal environmental variability. Although envi-
ronmental data from lotic systems are not as widely available
as terrestrial systems, field-based data collection infrastructure
and more-recent advances in informatics resources now provide
a reasonable amount of information for spatially and temporally
robust analyses of lotic species distributions and diversity. 

US-government-maintained river gaging stations that collect
discharge, water temperature and nutrient data are likely the
most accessed and temporally robust resources of riverine envi-
ronmental data. For example, the US Geological Survey maintains
approximately 10,000 stream gages across the United States and
associated territories ( https://waterdata.usgs.gov/nwis ), with the
first gage established on the Rio Grande basin in 1889. These types
of gages often provide useful environmental data at high temporal
resolutions, but their localized nature constrains the application
of these data to biodiversity data collected near an actual gage.
However, a recent influx of remote sensing observations includes
data on surface water quantity (e.g., the NASA Surface Water and
Ocean Topography mission) and water quality (e.g., Landsat- and
MODIS-based water temperature, clarity, color). The Monitoring
Trends in Burn Severity Program ( www.mtbs.gov ) maps the burn
severity and extent of large fires across all lands of the United
States from 1984 to the present and can be used to predict the ef-
fects of wildfire on surface water conditions. These data sources
are more continuous in space than in situ observations, but they
generally have less frequent sampling in time and limitations on
the basis of what can be observed from above (e.g., gaps under
clouds and canopy). 

Computational advances facilitated development of
watershed- to global-scale models that estimate river flows,
water temperatures, sediment, and nutrients in riverine systems
(Chien et al. 2013 , van Vliet et al. 2013 , Krause et al. 2019 ).
For example, the NorWeST project (Isaak et al. 2016 ) depicts
historical, spatially discontinuous stream temperature data and 
climate scenarios for streams and rivers across the western 
United States. Interpolation methods that can fill data gaps in 
space and time (Ver Hoef et al. 2014 ) can be applied to water
quality data to model historical stream conditions. A particularly 
appealing aspect of these models is retrospective characteri- 
zation and forecasting of freshwater environmental conditions 
across spatially contiguous areas, overcoming the constraints of 
localized stream gages and other sparse observations (in time or 
space). These models can also help identify trends and change 
points (box 1) within and beyond the observational record and 
can be used to discern cooccurring and frequently compounding 
factors influencing freshwater habitat quality, such as land cover 
change and climate change. Historical climate and land use data 
are generally used to develop models, but they can incorporate 
projected changes in climate and land use to estimate future 
environmental conditions, providing the ability to investigate po- 
tential species’ responses to environmental change (e.g., Andres 
et al. 2019 ). 

Physically based, spatially distributed hydrological models are 
now being implemented within the real-time forecasting systems 
traditionally dominated by weather models, with examples in- 
cluding the US NOAA National Water Model and the European 
Flood Awareness System (see review in Emerton et al. 2016 ). De-
veloped from long-term retrospective model integrations, these 
operational hydrological modeling systems provide new research 
and forecasting opportunities by predicting a more complete and 
detailed water cycle, including the high-resolution, rapid, first 
flush processes that can dominate contributions to constituent 
transport and water quality changes. For example, the NOAA Na- 
tional Water Model provides real-time estimates and forecasts out 

https://waterdata.usgs.gov/nwis
http://www.mtbs.gov
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o 10 days of high-resolution (250-meter) shallow water table, sur-
ace inundation, and surface runoff as well as water stores and
uxes through 5,000 lakes and 2.7 million stream reaches across
he United States (NOAA 2016 , Gochis et al. 2020 ). With the ad-
ition of water quality predictors, these models could transition
nto ecological forecasting applications that predict harmful algal
looms and degraded thermal regimes alongside floods and water
upplies. 
Ongoing development of environmental informatics resources 

llows the dissemination of large data sources from hydrological
odels, in situ measurement networks and remote sensing obser-
ations, and these can then be integrated with isotopic data from
useum specimens. These informatics resources are varied and
rovide an array of relevant environmental data for contemporary
nd retrospective analyses (reviewed in Dow et al. 2015 ). More-
ver, future riverine environmental estimates based on global
limate model projections are becoming available for integra-
ion with biodiversity data to investigate potential responses of
iodiversity to changes in climate. For example, the GIS-based
ydroclim data set (hydroclim.org) was developed, in part, for
ntegration with data from biodiversity collections and provides
onthly river discharge and water temperature estimates for

iver sections in all major watersheds in the United States and
anada from 1950 to 2099 based on 40 global climate model pro-
ections. Modern data science leverages the fields of both math-
matics (e.g., statistics, probability) and computer science (e.g.,
rtificial intelligence, machine learning). These techniques show
romise for meaningful joint analysis of data sources that vary
idely in quality, frequency, scale and type, as are common in en-
ironmental science and management (for a review, see Blair et al.
019 , Sun and Scanlon 2019 ). SIA data–model synthesis activities
an improve our understanding of the processes that influence
reshwater species habitat and health, which, in turn, can inform
etter resource management. 

ynthesis: Regional biodiversity collections, 
IA, and environmental data 

ow and why populations, communities, and ecosystems change
re fundamental questions in ecology. Hortal and colleagues
 2015 ) identified persistent gaps in ecological knowledge, includ-
ng uncertainties regarding the role of functional trait variation
nd ecological performance, organismal responses and tolerances
o abiotic shifts in ecological conditions, and the roles of species
i.e., biotic) interactions for driving change. Regional biodiversity
ollections are poised to help fill these knowledge gaps, owing to
oincident advances in discoverability enabled by digitization and
eoreferencing, the development of ecologically relevant concep-
ual and analytical approaches for SIA (see box 1), and emerging
ong-term data sets and infrastructure that document change in
cosystem attributes (see the section above). A comprehensive ef-
ort to measure stable isotope values of museum specimens of-
ers the potential for discovering process-based insights into the
rivers of biodiversity change over decadal time and continent-
ide spatial scales. 
The ESN (Lendemer et al. 2020 ) is the conceptual framework
e use to address these ecological knowledge gaps. We high-
ighted examples of the link between environmental change and
ommunity response viewed through the lens of food webs that
xplicitly incorporate trophic interactions, thereby translating 
iological diversity into ecosystem function and vice versa (Alp
nd Cucherousset 2022 ). For example, variation in functional
raits within and among species can be determined by exam-
ning covariation of morphometric traits and resource use in
he context of the isotopic niche (Layman et al. 2007 , Newsome
t al. 2007 ), especially for abundant and widespread species. Abi-
tic stressors, such as pollutant accumulation or climate-forced
hanges in temperature and precipitation are expected to affect
esource availability to consumers. Likewise, ecological responses
nd tolerances can be visualized by comparing changes in biodi-
ersity losses through extirpation and gains through species in-
roductions with shifts in resource use (determined through gut
ontent analysis) and trophic positions of constituent species de-
ermined by isotopic values (e.g., Vander Zanden and Rasmussen
996 ). Coupling stable isotope timelines with changes in abiotic
onditions identified in environmental data provides inferential
ower about the roles of changing stressors on community func-
ion over decades (e.g., Vander Zanden et al. 2003 , Turner et al.
015 ). 
A research program based on SIA and biodiversity collections

an be applied to any group of organisms. We focused on fresh-
ater fishes because they are nearly ubiquitous and important in
reshwater communities and are well represented in biodiversity
ollections in the United States and worldwide. Patterns of fish
iodiversity differ across biomes and reflect large-scale biogeo-
raphical processes and ecological gradients in precipitation
nd temperature and smaller-scale longitudinal patterns within
tream networks (Matthews 2012 ). Moreover, fishes are sensitive
ndicators of ecosystem transformation from natural and human
ctivities. As mobile and heterotrophic consumers, fishes are
ntegrators of primary and secondary production and therefore
ecord resource use and nutrient availability in their tissues.
ithin a community, fish species vary substantially in functional
iversity in relation to traits such as body size, trophic position,
orphology, life history, migration propensity, and other at-

ributes. Samples can be partitioned across life stages (ontogeny),
ndividuals, populations, species, and communities to address
cological hypotheses at all levels of biological organization (Ross
013 ) in aquatic ecosystems to address multiple questions about
utrient sources and cycling through a food web. 
Regional fish collections in the United States provide access

o millions of specimens, tissues, and metadata (e.g., field notes
nd other digitally captured records) to inform retrospective eco-
ogical studies employing SIA. The collections described in this
rticle hold specimens from long-term monitoring of sensitive
quatic systems, endangered species, and important fisheries
or most major systems in the United States, with well-sampled
egions in the Great Lakes, Mississippi, Colorado, Rio Grande,
nd Gulf Coastal waterways (figure 2 ). Survey timelines bracket
isturbances (table 1 , figure 1 ) such as habitat degradation,
ydrologic alteration, pollution, invasive species, and climate
hange that originate at multiple scales from point sources to
andscape or catchment and regional or global scales (Fausch
t al. 2002 , Allan 2004 , Dudgeon et al. 2006 , Olden et al. 2010 ).
ombining specimens across large, repeated collections facil-
tates analysis of stressor effects across levels that represent
emporally relevant ecological connections with other specimens
ollected at the same time (Lane 1996 , Hilton et al. 2021 ). The
pplication of SIA to widely distributed taxa at basin-wide,
ultiregional, or continental scales over time facilitates the
evelopment of dynamic isoscapes (Bowen 2010 ) that serve as
 template for more spatially and temporally focused research
fforts. 
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Socioeconomic considerations 

In addition to filling basic ecological knowledge gaps, a
collections-based SIA research program provides another means
of assessing coupled interactions and feedbacks of social, eco-
nomic, and natural systems. For example, the contamination of
fishes by mercury and other pollutants has been studied since the
mid-1970s using museum specimens, including some specimens
dated to the late nineteenth century. The application of SIA and
long-term environmental data to these samples could illuminate
the effectiveness of pollution control measures implemented
under the Clean Water and Clean Air Acts that were intended to
protect the environment and human health. By extension, the
analysis of contaminants in specimens, when coupled with SIA
and environmental risk analysis, could be used by federal, tribal,
and state agencies to address the disproportionate exposure bur-
dens often faced by Native Americans, minorities, rural residents,
immigrant, and low-income communities (Harris and Harper
1997 , 2004 , Sechena et al. 2003 , Gochfeld and Burger 2011 , Lauber
et al. 2017 ). Billions of dollars have been spent on freshwater
restoration projects in the United States (Bernhardt et al. 2005 ),
but there is still substantial debate about how to monitor and
quantify restoration outcomes. In major waterways such as the
Great Lakes, the efficacy of restoration is tied, at least in part, to
whether the locations had the capacity to provide key ecosys-
tem services historically or whether services are suppressed by
current stressors (Allan et al. 2013 ). The long-term perspective
provided by biodiversity collections provides an important line
of evidence to assess these alternatives and allow for better
investment in restoration locations and activities. 

Future directions 

We propose a concerted and large-scale research agenda that ex-
tends the utility of biodiversity collections for ecological inquiry
at broad temporal and spatial scales. We envision these steps to
developing this program: First, isotopically characterize fish spec-
imens within and across collections selected to span multiple wa-
ter resource regions along similar timelines to address broadscale
hypotheses of disturbance effects (table 1 ). Next, deposit georefer-
enced materials from ongoing studies in biodiversity collections
and implement specimen collection as part of restoration mon-
itoring. Then, link museum records explicitly to stable isotope
ratios recorded in the Isobank database to allow aggregation of
SIA data across space and time that includes details of tissue
type and other primary metadata associated with sample prepa-
ration, preservation history, and analysis. Next, connect temporal
and spatial patterns of isotope ratios to environmental databases
characterizing land use change, atmospheric, point and nonpoint
source pollution, and water quality. Then, associate SIA data from
fish collections with isotopic data of other organisms they depend
on for food (aquatic invertebrates). Next, couple renewed or sus-
tained specimen collection of frequently sampled sites with delib-
erately curated tissue samples. Then, use freshly collected tissue
samples in comparative studies to develop technologies to extract
more SIA data from archived museum material. Finally, identify
biodiversity collections with extensive international holdings to
compare hypotheses of community responses to environmental
change at global scales. 

The utility of this approach depends on regular resampling of
the most repetitively sampled sites or watersheds represented by
specimens in regional fish collections and continued archiving of
specimens from these sampling efforts in museums. The numbers
of specimens deposited in museums have dropped precipitously
in recent years (Colella et al. 2021 ). Rare species are the traditional
focus of current collecting efforts, but abundant species are most 
relevant for ecological study. It should also be possible to expand 
the scope of SIA studies involving biodiversity collections glob- 
ally by comparing specimens from US collections with extensive 
international holdings (e.g., the extensive Robert Rush Miller col- 
lections from Mexico archived in the fish collection at the Univer-
sity of Michigan) with specimens from collections in Mexico, other 
parts of Latin America or other parts of the world. 

In conclusion, there is enormous potential for a transformative 
research using biodiversity collections, SIA, and environmental 
informatics that could stimulate ecology akin to the impacts 
museum genomics has made in evolutionary biology (Card et al.
2021 ). Like DNA, isotope ratios are a fundamental currency inter- 
preted in the context of biogeochemical and ecological principles.
Long time series, extensive spatial sampling, and archived meta- 
data and other extended attributes of museum specimens could 
be further developed and explored in a research program that 
interfaces museum resources, stable isotope laboratories, and 
ecological observatory networks such as the Long Term Ecological 
Research Network and NEON (the National Ecological Observa- 
tory Network). Marshaling resources in regional fish collections 
in the United States and worldwide will provide important his- 
torical context to fundamental needs in freshwater biodiversity 
research that include bolstering data infrastructure, providing 
baselines for monitoring and scientifically reproducible means 
for assessing effects of disturbance and measures of restoration 
success. 
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