

Nitrogen

Ma gro	ain ups												——— Main groups ————				
1 1A																	18 8A
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li	4 Be												6 C	7 N	8 O	9 F	10 Ne
6.941	9.01218		Transition metals										12.011	14.0067	15.9994	18.998403	20.1797
11 No	12 Ma	2	4	5	6	7	0	0	10	11	10	13	14	15 D	16	17	18
1Nd 22.98977	24.305	3B	4B	5B	6B	7B	0	-8B-	10	1B	$\frac{12}{2B}$	AI 26.98154	51 28.0855	P 30.97376	32,066	CI 35.453	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.39	69.72	72.61	74.9216	78.96	79.904	83.80
37 Rh	38 Sr	39 V	40 7r	41 Nh	42 Mo	43 Tc	44 D.1	45 Ph	46 Pd	47	48	49 1	50	51 Ch	52 T.	53 T	54
85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102,9055	106.42	Ag 107.8682	112.41	114.82	5n 118,710	30 121,757	127.60	126 9045	Ae
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
132.9054	137.33	138.9055	178.49	180.9479	183.85	186.207	190.2	192.22	195.08	196.9665	200.59	204.383	207.2	208.9804	(209)	(210)	(222)
87 Er	88 Ro	89 †A.c	104 Df	105	106	107 Ph	108	109	110	111	112		114		116		118
(223)	Ra 226.0254	AC 227.0278	(261)	(262)	(266)	DI (264)	(269)	(268)	(271)	(272)	(277)		(289)		(289)		(203)
					(100)	(====)	(10))	(200)	(271)	(===)	(=///	1	(20))	1	(203)		(293)
				58	50	60	61	62	62	61	65	66	67	69	60	70	71
*Lanthanide series				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
				140.12	140.9077	144.24	(145)	150.36	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967
++				90	91	92	93	94	95	96	97	98	99	100	101	102	103
'Actinide series				1h	Pa	U 238 0280	Np	Pu	Am (242)	Cm (247)	Bk	Cf	Es	Fm	Md	No	Lr
				252.0501	231.0339	230.0209	237.048	(244)	(243)	(24/)	(247)	(251)	(252)	(257)	(238)	(259)	(262)

What Was the Animal Eating? Trophic Discrimination (Δ) You Are What You Eat... Sort Of

 $\delta^{15}N = 15\%$

Biochemical–Physiological Processes: Deamination: Lose ¹⁴N

> ¹⁴NH₃ ¹⁴NH₃

 $\Delta \delta^{15} N_{Tuna} = \delta^{15} N_{Prev} + 2-5\%$

δ^{15} N: Trophic Level

N = 2!

Jakle et al. unpublished

Sources of Nitrogen for Animals?

(Major) Amino Acid Metabolism

These 16 amino acids represent ~80–90% of amino acids in animal tissues

(¹²CO₂)

Animal Metabolism: Nitrogen

 $\begin{array}{c} \text{Diet} \\ \delta^{15} N_{\text{Protein}} \end{array}$

Tissue-Diet Discrimination $(\Delta^{15}N)$ Assimilation: Isotopic Incorporation & Protein Routing

> Biosynthesis: Amino Acids, Nucleic Acids

> > Tissues (Protein) (¹⁵N-enriched)

> > > Excretion (¹⁴NH₃)

Glutamine/Glutamate is Key: Transamination and Deamination

Direction influenced by [glutamate], [α-ketoglutarate], [NH₃], [enzymes]

(Major) Amino Acid Metabolism

These 16 amino acids represent ~80–90% of amino acids in animal tissues

Major Driver of Variation in Δ^{15} N: Form of Nitrogen Excreted

Ammonia – NH₃

 $Urea - (NH_2)_2CO$

- Simplest form to produce, but highly toxic
- Excreted by fully aquatic animals and invertebrates
- Results in relatively small $\Delta^{15}N$
- More complex to synthesize, but relatively nontoxic
- Excreted by mammals and some marine fish (sharks)
- Results in relatively large $\Delta^{15}N$
- Most complicated to synthesize, but least toxic form
- Excreted by birds, reptiles, and some insects
- Results in relatively large $\Delta^{15}N$

Major Driver of Variation in Δ^{15} N: Type of Nitrogen Excreted

Consumers have higher isotopic values than their food Animals preferentially retain ¹⁵N and excrete ¹⁴N

Vanderklift and Ponsard 2003

Other Factors Controlling Variation in $\Delta^{15}N$

- 1. Form of Excreted Nitrogen
- 2. Dietary Protein Quantity
- 3. Dietary Protein Quality
- 4. Animal Nutritional Status

Δ^{15} N Increases with Dietary Protein Content

Kelly and Martinez del Rio 2010

Δ^{15} N Increases with Dietary Protein Quality

Δ^{15} N Increases with Negative Nitrogen Balance

Lubcker

de Bruyn

Marion Island, South Africa

Mirounga leonina

Gluconeogenesis: A Critical Pathway

Take Home Message(s): Bulk Tissue δ^{15} N

Consumers have higher isotopic values than their food Animals retain ¹⁵N, excreting ¹⁴N via NH₃, urea, and uric acid.

 Δ^{15} N varies with dietary protein content, protein quality, and catabolism: Δ^{15} N increases positively with dietary protein content Δ^{15} N decreases with increasing dietary protein quality Δ^{15} N increases with increasing catabolism of endogenous protein (muscle).

Interpretation of isotope data relies on knowing which factors control the assimilation, synthesis, and incorporation of isotopes into tissues.