

Elemental Ecology Week Three

CAM Photosynthesis

mesophyll cell

Crassulacean Acid Metabolism (CAM)

Typically, CAM plants open their stomata during the night and fix CO_2 using PEP carboxylase. Then they close their stomata during the day and decarboxylate 4-carbon sugars to produce CO_2 , which is subsequently fixed by Rubisco.

However, some CAM plants open their stomata during the day and use Rubisco to fix CO₂ directly.

Which enzyme is a CAM plant using more frequently to fix CO₂ if it has a δ^{13} C value of -13‰? What about -20‰?

CAM Photosynthesis

Figure 4. Predicted δ^{13} C value for CAM plants as a function of the proportions of CO₂ fixed at night and during the day.

Terrestrial Plant $\delta^{13}C$ Summary

What variable is the biggest determinant of $\delta^{13}C$ values in C_3 plants?

 c_i / c_a ratio

How about in C_4 plants?

φ (bundle sheath cell "leakiness" factor)

CAM plants?

Relative proportion of daytime vs. nighttime CO_2 fixation

New Mexican Primary Producers

Aquatic Photosynthesis

δ^{13} C values vary among aquatic primary producers

Different aquatic primary producers have different δ^{13} C values due To physiological and environmental conditions

Clementz and Koch 2001

Aquatic Photosynthesis

Inorganic carbon is fixed by photosynthetic organisms

There are different types of inorganic carbon in water

The δ^{13} C values of aquatic primary producers vary across space and time due to the following factors:

- \rightarrow types and concentrations of inorganic carbon sources
- \rightarrow carbon concentrating mechanisms
- \rightarrow primary producer growth rate
- → primary producer cell size and geometry
- \rightarrow temperature
- ightarrow water velocity and water mixing

Aquatic Inorganic Carbon Sources

1

Aquatic Inorganic Carbon Sources

Aquatic Inorganic Carbon Sources

DIC δ^{13} C values influence algal δ^{13} C values in streams

Finlay 2001

Growth Rate

Growth rate is proportional to the net flux of CO₂ into the cell

↑ growth rate leads to ↓
$$Δ^{13}C$$

↓ $Δ^{13}C = ↑δ^{13}C$

As algal growth rates increase, the organisms essentially become less 'picky' and discriminate against ¹³CO₂ less

Growth Rate

Laws et al. 1995

Algal Cell Size and Geometry

Popp et al. 1998

Algal Cell Size and Geometry

Popp et al. 1998

Temperature

decreasing temperature leads to increasing isotopic fractionation and lower δ^{13} C values

Goericke and Fry 1994

Increasing water velocity decreases algal $\delta^{13}C$ values in streams and rivers

Finlay et al. 2002

New Mexican Primary Producers

Additional slides...

Aquatic Algal Photosynthesis

Aquatic Algal Photosynthesis

Assuming algal growth rate (μ) is proportional to net cellular CO₂ flux...

$$\mu = K_1 c_e - K_2 c_i$$

$$c_i = (K_1 c_e - \mu) / K_2$$

$$C = e_s + a_l + [b - e_s - a_l] ((K_1 c_e - \mu) / K_2 / c_e)$$

What do you think contributes the most to variation in Δ^{13} C in algae?

13