Experimental design

Developing and testing a hypothesis

BEMP workshop 2023

Why is experimental design important?

A successful experiment: -Objective and controlled -Precise

-Draws specific conclusions

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

The Middle Rio Grande Basin

Define your system:

- A location
- A species
- A food web

Background Research

- Google Scholar Search the literature
 - What's the gap in our knowledge?
 - Are there new techniques?
- Data from previous projects
- Consult available experts

What's going on in your study system?

- Historically?
- Modern changes?
- What do you find interesting?

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

Narrow your focus

How much grass do grasshoppers actually eat?

Do all ants that live in the same nest eat the same thing?

How much trash do coyotes in the Bosque eat?

Do the two turtle species in the Bosque School pond compete for the same resources?

Which Bosque tree species do porcupines prefer to eat?

~2 Hours of field time

A Field Guide to the Plants and Animals of the Middle Rio Grande Bosque

JEAN-LUC E. CARTRON • DAVID C. LIGHTFOOT JANE E. MYGATT • SANDRA L. BRANTLEY • TIMOTHY K. LOWREY

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

Make a Prediction (educated guess)

Must specify the direction and/or type of change (don't just say something will change)

Must be Testable (null hypothesis=no relationship)

I eat roots, stems, leaves, and seeds from a wide variety of plants

What do you predict the hispid cotton rats will eat after the fire?

Only small grasses and forbs (flowers) have grown back quickly

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

Experiment

Collection

- Sample types?
 - 15/20 proteins
 - 10 plants
 - Mix of both
- Sampling method
 - Transect
 - Random
 - Other?

Needs to be replicable, write everything down

What should you think about when sampling?

Sample Preparation and Analysis

- Dry samples
- Isolate desired compounds
- Isotopic analysis using mass spectrometer

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

Data analysis and results

Sample ID	Plant	Collection Date	d13C	d15N	Location
Algae#2 BP 11/28	algae	11/28/2018	-23.7	1.5	Bosque School Pond
BP Algae #1 11/28	algae	11/28/2018	-16.4	-0.7	Bosque School Pond
BP Algae #3 11/28	algae	11/28/2018	-27.8	0.2	Bosque School Pond
Chokecherry - A	Chokecherry	Fall 2020	-26.4	2.4	Sandia Mountains
CWB2	Cottonwood	Fall 2018	-29.0	-3.5	Albuquerque Bosque
#1 Cotton Wood Buds	Cottonwood	9/24/2019	-31.8	-3.5	Bosque School
Cottonwood Bark	Cottonwood	9/24/2019	-29.9	-3.5	Bosque School
CW1	Coyote Willow	Fall 2018	-30.2	-2.9	Albuquerque Bosque
CWBU1	Coyote Willow	Fall 2018	-31.4	-2.7	Albuquerque Bosque
CW2	Coyote Willow	Fall 2018	-29.5	-4.1	Albuquerque Bosque
Coyote Willow Leaves	Coyote Willow	9/24/2019	-30.3	-0.9	Bosque School

Preview of Saturday

Sample ID	Plant	Collection Date	d13C	d15N	Location
Algae#2 BP 11/28	algae	11/28/2018	-23.7	1.5	Bosque School Pond
BP Algae #1 11/28	algae	11/28/2018	-16.4	-0.7	Bosque School Pond
BP Algae #3 11/28	algae	11/28/2018	-27.8	0.2	Bosque School Pond
Chokecherry - A	Chokecherry	Fall 2020	-26.4	2.4	Sandia Mountains
CWB2	Cottonwood	Fall 2018	-29.0	-3.5	
#1 Cotton Wood Buds	Cottonwood	9/24/2019	-31.8	-3.5	
Cottonwood Bark	Cottonwood	9/24/2019	-29.9	-3.5	14
CW1	Coyote Willow	Fall 2018	-30.2	-2.9	12 -
CWBU1	Coyote Willow	Fall 2018	-31.4	-2.7	10
CW2	Coyote Willow	Fall 2018	-29.5	-4.1	
Coyote Willow Leaves	Coyote Willow	9/24/2019	-30.3	-0.9	8 -

Ben-David et al, 2012

Distance from river (m)

- Observation
- Question
- Hypothesis
- Experiment and data collection
- Data analysis
- Conclusion

Present data – Draw conclusions

- Do the results support our hypothesis?
- If not, what might help explain the results?
- Does this fill a gap in knowledge?
- How might this inform future research?

Stable Isotope Workshop: Experimental Design Worksheet

Instructions: Fill out the worksheet with your group

- 1. Define the research question(s) for your project
- Must be In the bosque
- Within the constraints of the workshop
- 2. List specific hypothesis/hypotheses you will test to answer those questions
 - Specific, testable, related to your question, relevant
- 3. Sketch out an experimental design that will allow you to test those hypotheses
- 4. What isotopes will you analyze to test these hypotheses (think about which isotopes give you what ecological inferences).

Carbon, Nitrogen, Hydrogen, Oxygen?

- 5. List specifics on:
 - a. What you will collect? (e.g. seeds, leaves, fruit)
 - b. How many samples will you collect?

15-20 proteins, 10 plants

- c. How will you conduct your sampling (e.g. transect, random, etc.)
- d. How will you transport materials from field to lab for stable isotope analysis? Create a comprehensive supply list here.

Falcon tubes, coin envelopes, Mcf tubes, tweezers, Tupperware

• Come up with a plan for your experiment, think about your variables, and how to obtain accurate results which can answer your hypothesis

Final thoughts

- Take detailed notes of your experiment
- How will you conduct your sampling?
- What will you collect and how many?
- What tools will you need to collect them?
- How much time will it take?
- Enjoy learning new stuff!