Nutrition

New Mexico Red Chile Nutrition Facts						
Serving Size: 1 Serving						
Amount Per Servin	g	% Daily Value*				
Calories	39.5 kcal	2 %				
Total Fat	1.9 g	3 %				
Saturated Fat	0.6 g	3 %				
Trans Fat	0 g					
Cholesterol	9.9 mg	3 %				
Sodium	206.4 mg	9 %				
Total Carbohydrate	e 2.7 g	1 %				
Dietary Fiber	1.8 g	7 %				
Sugars	0.4 g					
Protein	3.6 g	7 %				
Vitamin A	28 % • Vitamin C	0 %				
Calcium	2 % • Iron	6 %				
* Percent Daily Values a	are based on a 2,000	calorie diet. Your				

ually needs.

Periodic Table of the Elements

Ma gro	ain ups								\mathbf{i}				Main groups				
1 1A							/			\geq							18 8A
1 H 1.00794	2 2A		ТМ									13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218		Transition metals									5 B 10.81	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.998403	10 Ne 20.1797
11 Na 22.98977	12 Mg 24.305	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.98154	14 Si 28.0855	15 P 30.97376	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.41	49 In 114.82	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.33	57 *La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.9804	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0254	89 [†] Ac 227.0278	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (271)	111 (272)	112 (277)		114 (289)		116 (289)		118 (293)
*Lan	thanid	e series		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
[†] Act	inide se	eries		90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	107.26 100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

Stable Isotopes of H, C, N, O

Measuring Isotopes: Little (δ) Notation

Means of expressing the *relative* abundance of the heavier stable isotope in a mixture of atoms.

R = molar ratio of heavy-to-light isotopes of an element R for carbon isotopes = ${}^{13}C/{}^{12}C$

Units of δ are "‰" or "per mil"

International Reference Standards

Acronym	Standard Name	lsotopes	R _{heavy/Light}
V-SMOW	Vienna Standard Mean Ocean Water	² H/ ¹ H	0.00015576
V-SMOW	Vienna Standard Mean Ocean Water	¹⁸ O/ ¹⁶ O	0.00200520
V-PDB	Vienna Pee Dee Belemnite	¹³ C/ ¹² C	0.0112372
Air	Atmospheric Air	¹⁵ N/ ¹⁴ N	0.0036765

International reference standards (by definition) have a value of 0‰ on the δ -scale of interest.

Isotopic Fractionation: Some Basics

Isotopes of the same element undergo the same chemical reactions (because isotopes have same number of protons and electrons)

But isotopes have <u>different thermodynamic properties</u> because they have different masses. (melting point, vapor pressure, diffusion coefficient, reaction rate constants)

Thus, different isotopes react at different **<u>rates</u>** in chemical reactions

This leads to isotopic sorting (fractionation).

Isotopic Fractionation: Lighter Goes Faster

Process that occurs during chemical reactions resulting in abundance of heavy isotopes in the <u>reactant (A)</u> being different from the abundances of the heavy isotopes in the <u>product (B)</u>