Nutrition

Macromolecules

Fats
Fatty Acids
Cholesterol

Carbohydrates
Sugars
Starches
Cellulose

Ex: Glucose

Carbon
Oxygen
Hydrogen

Proteins
Amino Acids

Ex: Glutamate

Carbon
Oxygen
Hydrogen
Nitrogen

Average Plant

Average Insect

Protein	Lipids	$[\mathrm{C}]=45 \%$
$[\mathrm{~B}]=12 \%$		

Average Animal

Periodic Table of the Elements

Stable Isotopes of H, C, N, O

Measuring Isotopes: Little (δ) Notation

Means of expressing the relative abundance of the heavier stable isotope in a mixture of atoms.
$R=$ molar ratio of heavy-to-light isotopes of an element R for carbon isotopes $={ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$

$$
\begin{gathered}
\delta=\left(\frac{R_{\text {sample }}}{R_{\text {standard }}}-1\right) \times 1000 \\
\delta^{13} \mathrm{C}=\left(\frac{\left[{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\right]_{\text {sample }}}{\left[{ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\right]_{\text {standard }}}-1\right) \times 1000
\end{gathered}
$$

Units of δ are "\%" or "per mil"

International Reference Standards

Acronym	Standard Name	Isotopes	$R_{\text {heavy/Light }}$
V-SMOW	Vienna Standard Mean Ocean Water	${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$	0.00015576
V-SMOW	Vienna Standard Mean Ocean Water	${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$	0.00200520
V-PDB	Vienna Pee Dee Belemnite	${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$	0.0112372
Air	Atmospheric Air	${ }^{15} \mathrm{~N} /{ }^{14} \mathrm{~N}$	0.0036765

International reference standards (by definition) have a value of 0% on the δ-scale of interest.

Isotopic Fractionation: Some Basics

Isotopes of the same element undergo the same chemical reactions (because isotopes have same number of protons and electrons)

But isotopes have different thermodynamic properties
because they have different masses.
(melting point, vapor pressure, diffusion coefficient, reaction rate constants)
Thus, different isotopes react at different rates in chemical reactions

This leads to isotopic sorting (fractionation).

Isotopic Fractionation: Lighter Goes Faster

Reactant (A)

Product (B)

Process that occurs during chemical reactions resulting in abundance of heavy isotopes in the reactant (A) being different from the abundances of the heavy isotopes in the product (B)

