Nitrogen Isotopes in Plants
Nitrogen: The Basics
Nitrogen: The Basics

Nitrogen Gas

Ammonium

Nitrate
Nitrogen Assimilation

Ammonium (NH$_4^+$)

Nitrate (NO$_3^-$)
Since nitrogen is a limiting nutrient, plants can’t be picky...

\[\frac{{^{15}\text{N}}}{{^{14}\text{N}}} = \frac{5}{10} \]

\[\delta^{15}\text{N} = \frac{5}{10} \]
Ammonium (NH_4^+) → Nitrite (NO_2^-) → Nitrate (NO_3^-)

Assimilation

Nitrification
The reactant (ammonium) contains more ^{15}N than the product (nitrate).

The reactant (ammonium) has a higher $\delta^{15}\text{N}$ value than the product (nitrate).
Ammonium \((\text{NH}_4^+)^+\)

Nitrate \((\text{NO}_3^-)\)

Nitrite \((\text{NO}_2^-)\)

Assimilation

Nitrification
Denitrification

Atmospheric Nitrogen (N_2)

Assimilation

Ammonium (NH_4^+)

Nitrite (NO_2^-)

Nitrate (NO_3^-)

Assimilation

Bacteria

Bacteria

Bacteria
Denitrification: Lighter Goes Faster

The reactant (nitrate) contains more 15N than the product (N_2).

The reactant (nitrate) has a higher δ^{15}N value than the product (N_2).
Denitrification

- Atmospheric Nitrogen (N_2)
 - $\downarrow^{15}N$
 - $\downarrow^{\delta^{15}}N$

- Ammonium (NH_4^+)
- Nitrite (NO_2^-)
- Nitrate (NO_3^-)

Assimilation

$\uparrow^{15}N$
$\uparrow^{\delta^{15}}N$
Nitrogen Fixation

$\delta^{15}N = 0\%$

Atmospheric Nitrogen (N_2)

Assimilation

Ammonium (NH_4^+)

Assimilation

Nitrite (NO_2^-)

Assimilation

Nitrate (NO_3^-)
Nitrogen Fixation

On land (in soils), N\textsubscript{2} fixation is mostly done by rhizobia (a type of bacteria). In aquatic (marine and freshwater) ecosystems, it is mostly done by cyanobacteria.

Atmospheric N\textsubscript{2}

\begin{align*}
\frac{^{15}\text{N}}{^{14}\text{N}} &= \frac{5}{10} \\
\delta^{15}\text{N} &= \frac{5}{10}
\end{align*}

Ammonium (NH\textsubscript{4}+)

\begin{align*}
\frac{^{15}\text{N}}{^{14}\text{N}} &= \frac{5}{10} \\
\delta^{15}\text{N} &= \frac{5}{10}
\end{align*}
Ammonium (NH$_4^+$)

Nitrate (NO$_3^-$)

Nitrite (NO$_2^-$)

Atmospheric Nitrogen (N$_2$)

$\delta^{15}N = 0\%$

Nitrogen Fixation

Assimilation

Assimilation
Ammonium (NH$_4^+$)

Nitrate (NO$_3^-$)

Nitrite (NO$_2^-$)

Atmospheric Nitrogen (N$_2$)

The form of inorganic nitrogen a plant uses strongly influences its δ^{15}N values!
Wide Range in δ^{15}N Values in New Mexican Plants and Algae!
Plant Nitrogen
Take Home Points

• Transformations between different types of inorganic nitrogen produce the largest isotopic fractionations in the nitrogen cycle

• All of these transformations are done by bacteria (microbes rule the world, and they certainly rule the nitrogen cycle)

• During chemical transformations, lighter molecules (containing 14N) move faster, resulting in lots of variation in d^{15}N values of both the organic and inorganic pools of nitrogen