

Elemental Ecology Week Three

1A																	8A
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218	Transition metals											6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.998403	10 Ne 20.1797
11 Na 22.98977	12 Mg 24.305	3 3B	4 4B	5 5B	6 6B	7 7B	8		10	11 1B	12 2B	13 Al 26.98154	14 Si 28.0855	15 P 30.97376	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.41	49 In 114.82	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.33	57 *La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.9804	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0254	89 [†] Ac 227.0278	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (271)	111 (272)	112 (277)		114 (289)		116 (289)		118 (293)
*Lanthanide series				58 Ce 140.12	59 Pr 140.9077	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.9254	66 Dy 162.50	67 Ho 164.9304	68 Er 167.26	69 Tm 168.9342	70 Yb 173.04	71 Lu 174.967
[†] Act	inide se	eries		90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)
-																	

H. CRAIG

Fig. 3. δ C¹³/C¹² in θ_{00} , of various carbonaceous samples.

Mean annual plant $\delta^{13}C$

PHOTOSYNTHESIS $6 \text{ CO}_2 + 6 \text{ H}_2 \text{ O} \rightarrow \text{ C}_6 \text{ H}_{12} \text{ O}_6 + 6 \text{ O}_2$

 δ^{13} C of atmospheric CO₂? -8.5‰

Photosynthesis takes place in chloroplasts

Photosynthesis on land:

C₃ Photosynthesis & Fractionation

C₃ Photosynthesis & Fractionation

C₃ Photosynthesis & Fractionation

$$\delta^{13}C_{plant} = \delta^{13}C_{atm.} - a - (b - a)(c_i / c_a)$$

$$\begin{split} \delta^{13} C_{atm.} &= -8.4\% \\ a &= 4.4\% \\ b &= 27.0\% \\ c_i \,/\, c_a &= 0.7 \end{split}$$

$$\delta^{13}C_{atm.} = -8.4\%$$

 $a = 4.4\%$
 $b = 27.0\%$
 $c_i / c_a = 0.9$

Impact of c_i / c_a on $\Delta^{13}C$

Ehleringer et al. 1980

Why is there so much variation in the δ^{13} C values of C₃ plants?

Fogel et al. unpublished data

Why is there so much variation in the δ^{13} C values of C₃ plants?

Factors that impact Δ and δ^{13} C in C₃ plants:

CO₂ Source Salinity Precipitation Degree of Shading Level of Aridity

The sources and $\delta^{13}C$ values of CO_2 impact plant $\delta^{13}C$ values

Burning fossil fuels can decrease local atmospheric CO₂ δ^{13} C values

Pataki et al. 2007

The sources and $\delta^{13}C$ values of CO₂ impact plant $\delta^{13}C$ values

Burning fossil fuels has decreased global CO₂ δ^{13} C values Dombrosky 2020

The sources and δ^{13} C values of CO₂ impact plant δ^{13} C values

Use of respired CO₂ can decrease δ^{13} C values of understory plants **"The Canopy Effect"**

Increasing salinity increases $\delta^{13}C$ values

If a plant is water-stressed, it will **close its stomata** to prevent water loss.

This decreases c_i / c_a and thus, **decreases isotopic discrimination**.

Increasing precipitation decreases δ^{13} C values

Stewart et al. 1995

Increasing light increases $\delta^{13}C$ values

Ding Hu Shan, China -25 ^{1 3}C, %。 30 ○ A. quinquegona 60 • C. chinensis \triangle P. rubra ▲ S. superba -35 30 20 40 50 Daily photon flux, mol $m^{-2}d^{-1}$

Increasing light increases photosynthetic rate.

This decreases isotopic discrimination by reducing c_i/c_a

Increasing altitude increases δ^{13} C values

Körner et al. 1988, 1991

How might aridity influence δ^{13} C values?

How might aridity influence δ^{13} C values?

C₄ photosynthesis now accounts for almost 25% of terrestrial gross primary productivity despite only occurring in < 5% of plants!

C₄ grass Digitaria brownie

(b)

C₄ photosynthesis evolved independently many times

C₄ photosynthesis evolved independently in over 60 plant lineages within both Eudicots and Monocots

The evolution of C₄ photosynthesis depends on the co-occurrence of the necessary external (e.g., climatic conditions) and internal factors (e.g, genetic, structural, and biochemical conditions)

The oldest C₄ lineage (Chloridoideae) is ~30 million years old

C₄ photosynthesis evolved in a low [CO₂] atmosphere

Rubisco is both a carboxylase (yay!) and an oxygenase (boo!)

- Photorespiration occurs when Rubisco fixes O_2 instead of CO_2
- Photorespiration is wasteful and energetically expensive

Photorespiration occurs more frequently as [CO₂]/[O₂] decreases

Avoiding photorespiration with C₄ photosynthesis

cell

PEP carboxylase evolved in a low CO_2 / high O_2 atmosphere

PEP <u>carboxylase</u> fixes CO₂ and HCO_3^- (it never interacts with O_{21})

$$\delta^{13}C_{\text{plant}} = \delta^{13}C_{\text{atm.}} - a - [b_{\text{PEP}} + b_{\text{RUB}}(\phi) - a](c_i / c_a)$$

$$\begin{split} \delta^{13}C_{atm.} &= -8.4\% \\ a &= 4.4\% \\ b_{PEP} &= -5.7\% \\ b_{RUB} &= 27.0\% \\ \phi &= 0.3 \\ c_i \,/\, c_a &= 0.4 \end{split}$$

What leads to variation in δ^{13} C values in C₄ plants?

C₄ Grasses from Australia

What leads to variation in δ^{13} C values in C₄ plants?

 p_i / p_a (bar / bar)

What leads to variation in δ^{13} C values in C₄ plants?

Bundle Sheath Cell "Leakiness"

Metabolic Subtype (e.g., NAD-ME, NADP-ME)