Periodic Table of the Elements

Ma gro	ain ups													- Main §	groups		
1 1A		Wh	at is	the	larg	jest	rese	ervoi	r of	nitro	oger	n on	the	plar	net?		18 8A
H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218				—— T	ransitic	on meta	ls ——				5 B 10.81	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.998403	10 Ne 20.1797
11 Na 22.98977	12 Mg 24.305	3 3B	$4 \\ 4B$	5 5B	6 6B	7 7B	8		10	11 1B	12 2B	13 Al 26.98154	14 Si 28.0855	15 P 30.97376	16 S 32.066	17 Cl 35.453	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.996	25 Mn 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.69	29 Cu 63.546	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.9055	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.41	49 In 114.82	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.9045	54 Xe 131.29
55 Cs 132.9054	56 Ba 137.33	57 *La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.2	77 Ir 192.22	78 Pt 195.08	79 Au 196.9665	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.9804	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0254	89 †Ac 227.0278	104 Rf (261)	105 Db (262)	106 Sg (266)	107 Bh (264)	108 Hs (269)	109 Mt (268)	110 (271)	111 (272)	112 (277)		114 (289)		116 (289)		118 (293)
*Lan	thanid	e series		58 Ce 140.12	59 Pr 140.9077	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.9254	66 Dy 162.50	67 Ho 164.9304	68 Er 167.26	69 Tm 168.9342	70 Yb 173.04	71 Lu 174.967
[†] Acti	inide se	eries		90 Th 232.0381	91 Pa 231.0359	92 U 238.0289	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

What are some other forms of inorganic nitrogen?

Nitrogen: The Basics

Nitrogen is (almost always) a limiting nutrient.

All plants (marine, aquatic, and terrestrial), phytoplankton, and bacteria can use NH_4 (ammonium) as a nitrogen source.

Most plants and some bacteria can use NO_3 (nitrate) as a nitrogen source.

Only a few cyanobacteria and microbes can use $N_{\rm 2}$ as a nitrogen source.

Redox is Important: Controls Speciation in Compounds

What Controls $\delta^{\rm 15} N$ Variation in Soils and Plants?

Major Themes

Chemical transformations are key to isotopic fractionation.

Although there are exceptions, the conversion of organic to inorganic material is most often the primary interest.

Separate internal cycling from additions and losses.

Chalkboard

Soil Processes: Observed $\Delta^{15}N$

	Process	Fractionation (‰)	1 Source
c II	N ₂ fixation	-2 to 2	(1)
Small	Assimilation	-1 to 1.6	(2)
	Nitrification	12 to 35	(3), (1)
Large	Denitrification	0 to 33, 26	(1), (4)
	Ammonia volatilization	20 to 27	(1)
Small	Mineralization	-1 to 1	(2)
	Ion exchange	−1 to −8	(5)
	Enzymatic hydrolysis	10 to 24	(6)
	N transfer, ECM fungi to plant host	8 to 10	(6)
	N transfer, AM fungi to plant host	0 to 3.5^{a}	(7)

Positive values indicate that the reactant is enriched in ${}^{15}N$ (e.g., NH_4^+ in nitrification) and the product is depleted in ${}^{15}N$ (e.g., NO_3^- in nitrification). Sources: (1) Högberg (1997), (2) Kendall (1998), (3) Shearer and Kohl (1986), (4) Pörtl et al. (2007), (5) Hübner (1986), (6) Hobbie and Colpaert (2003), (7) Handley et al. (1999b)

ECM ectomycorrhizal, AM arbuscular mycorrhizal

"Lighter Goes Faster"

Major Transformations

Positive values indicate reactant is enriched in ¹⁵N, and the product is depleted in ¹⁵N

Major Transformations

Positive values indicate reactant is enriched in ¹⁵N, and the product is depleted in ¹⁵N

Enzymes Associated with NH₄ Uptake

Where Does This Occur?

Fractionation During NH₄ Uptake

Intermediate $\Delta^{15}N$ (only equilibrium effect) $NH_4 \iff NH_3 + H^+$

Major Transformations

Positive values indicate reactant is enriched in ¹⁵N, and the product is depleted in ¹⁵N

Nitrification

 $2NH_4 + 3O_2 \longrightarrow 2NO_2 + 4H + 2H_2O$ (Nitrosomonas, Comammox)

 $2NO_2 + O_2 \longrightarrow 2NO_3$ (Nitrobacter, Nitrospira, Comammox)

OR

 $NH_3 + O_2 \longrightarrow NO_2 + 3H^+ + 2e^ NO_2 + H_2O \longrightarrow NO_3 + 2H^+ + 2e^-$

Nitrifying ammonia-oxidizing bacteria (AOB) and archaea (AOA) Nitrifying organisms are chemoautotrophs (use CO₂) Nitrification takes place only in the presence of oxygen (aerobic) Important in agricultural systems (converts NH₃ to NO₃) Increases soil leaching because NO₃ is more soluble in water

Positive values indicate reactant is enriched in ¹⁵N, and the product is depleted in ¹⁵N Denitrification

$$NO_3 + 12H^+ + 10e^- = N_2 + 6H_2O$$

 $NO_3 \longrightarrow NO_2 \longrightarrow NO + N_2O \longrightarrow N_2$

Denitrifying bacteria (nitrate reductase enzyme). Takes place only in the *absence* of oxygen (anaerobic). Deep soils, stagnant waters, ocean depths. Lowers soil fertility by converting useful NO₃ into useless N₂.

Nitrogen Fixation: Nitrogenase

 $N_2 + 8H^+ + 8e^- + 16 ATP = 2NH_3 + H_2 + 16ADP + 16 P_i$

Discrimination During N₂ Fixation: 0‰ to -2‰

Nitrogen fixation is not perfect:

- Fixed nitrogen (NH₃) can be altered by fungi before plants assimilate it.
 - Within plant fractionation (enzymatic or diffusion).
 - Plants take up multiple sources (N₂/NH₄/NO₃)

Guano Wars: 1879–1883

Productive Humboldt Current (Eastern Boundary Current).
 Seabirds breed on offshore rocks absent of predators.
 Seabird poo (guano): ammonium oxalate, urate, phosphates: high δ¹⁵N.
 A rare but important commodity that created conflicts among countries.

Industrial N₂ Fixation

- Fritz Haber (1886–1934)
- 1918 Nobel Prize (Chemistry)
 - "Father of Chemical Warfare"
- Anthropogenic generation of fertilizers
 - >50% of current fertilizer production.

- Industrially completing the same reaction as biological N_2 fixation.
 - $2N + 3H_2 = 2NH_3$
- Fractionation close to zero but can vary by the process. Becomes progressively positive with processing.

Atmospheric Deposition

Power Plant NO_X Pollution

Primary Producer $\delta^{\rm 15}{\rm N}$ Gradients in the Ocean

Nitrogen Cycling in the Ocean (or a lake)

N Fractionating Processes Occur at Different Depths

NO₃ Assimilation in Surface Ocean

Assimilation of NO₃⁻ by primary producer strongly influences the $\delta^{15}N$ value of the remaining dissolved NO₃⁻

Sigman, Karsh, and Casciotti 2011

Primary Producer $\delta^{\rm 15}{\rm N}$ Gradients in the Ocean

N₂ Fixation in the Oligotrophic Pacific Ocean

