

Consumer Oxygen Elemental Ecology

Where does the oxygen in animal tissues come from?

The oxygen it breathes

The food it eats

C₆H₁₂O₆

0,

H₂O

The water it drinks AND The water bound in its food

Where does the oxygen in animal tissues come from?

Bone Composition

Tooth Composition

Teeth grow by accretion

Most tooth growth occurs early on in an animal's life

But...

Some animals have continuously-growing teeth (e.g., elephants, rodents)

Some animals have continuous tooth replacement (e.g., fish, amphibians, and reptiles)

Fish otoliths also grow by accretion

Inorganic $\delta^{18}O$ Assumptions

Biogenically produced minerals are in *isotopic* equilibrium with body water

The δ^{18} O of body water and the **temperature** (mainly a concern for ectotherms) influence biomineral δ^{18} O

Biogenic phosphate and carbonate δ^{18} O values are strongly correlated with meteoric water δ^{18} O values

Koch 1998

Savana Ecosystems

C₃ Shrubs and Trees

 $\begin{array}{c} \text{Deeper roots} \\ \text{Experience less water stress} \\ \text{Close stomata less} \\ \text{Lose more H_2O$ to evapotranspiration} \\ \text{Higher δ^{18}O$} \end{array}$

C₄ Grasses

 $\begin{array}{c} \mbox{Shallower roots} \\ \mbox{Experience more water stress} \\ \mbox{Close stomata more} \\ \mbox{Lose less } \mbox{H}_2\mbox{O} \mbox{ to evapotranspiration} \\ \mbox{Lower } \delta^{18}\mbox{O} \end{array}$

Diet and physiology impact consumer $\delta^{18}O$ values

Diet and physiology impact consumer $\delta^{18}O$ values

 87 Sr/ 86 Sr and δ^{18} O values tell a story about the movement patterns of a Woolly Mammoth that lived 17,100 years ago

1.7 m long tusk from a 28-year-old male ~340,000 $^{87}\text{Sr}/^{86}\text{Sr}$ measurements and ~1,500 $\delta^{18}\text{O}$ measurements mapped onto isoscapes of Alaska and Canada

δ^{18} O records as climate proxies

The $\delta^{18}\text{O}$ values of minerals precipitated in water (e.g., calcite, aragonite) are dependent on temperature and the $\delta^{18}\text{O}$ value of dissolved CO_2

T (°C) =
$$16.5 - 4.3(\delta^{18}O_{calcite} - \delta^{18}O_{water}) + 0.14(\delta^{18}O_{calcite} - \delta^{18}O_{water})^2$$

Physiology (e.g., growth rate) can also impact the δ^{18} O values of biogenically produced minerals (geologists refer to these impacts as "vital effects")

$\delta^{18}O$ records as climate proxies

Foraminifera

most are benthic and heterotrophic

typically have shells made of calcium carbonate (CaCO₃)

decreasing δ¹⁸O values indicate ∞ increasing temperature

Oxygen in organic tissues

OH Tyr Cys Ο H_2N_2 O Phe N H H_2N NH_2 ΗŃ S Cys_S Pro ΗŅ Ò Ο H N N Gln Ο H II O H *__*0 0 H_2N 0 °O N H Asn Ö ΝH₂ Arg ΝH₂ Gly

Protein

Chitin

$\delta^2 H$ and $\delta^{18} O$ in Human Hair

Estimated that nearly 70% of oxygen in chironomid chitin came from environmental water

We are ignoring atmospheric O_2 contributions...