Consumer Amino Acid Hydrogen Isotopes

Wet Chemistry: Hydrolysis and Derivatization

(1) Lipid-Extraction & Dowex (purify protein)
2:1 Chloroform:Methanol (3 X 24hr soaks, DI rinse, freeze-dry)
Dowex resin (acid:base) to remove carbohydrates

(2) Acid Hydrolysis

~5mg of tissue hydrolyzed in 6N HCl at 110°C for 20 hours Glutamine/Glutamate converted to glutamic acid during hydrolysis

(3) Esterification of Carboxyl Terminus Add 1ml of 1:4 acetyl chloride:isopropanol Heat at 110°C for 60 minutes Adding C and H, but we know how much (where) and δ value

(4) Trifluoroacetylation of Amine Group Add 1ml of 1:1 dichloromethane:trifluoroacetic anhydride (TFAA) Heat at 110°C for 10 minutes

Black is what you add, red is what you want to measure...

Basic molecular weight (MW) of compound +206!

Unless there are multiple active groups: Asp and Glu (two propyl esters) Ser, Thr (two per fluoro groups, OH⁻) What Happens to Hydrogen During Derivatization? H bound to C (alpha and methyl) less likely to be replaced

H bound to N or O: not as strongly bonded

Fogel et al. 2016

How is Hydrogen Swapped On and Off of Molecules? Enzymes

via dehydrogenases: transfers H to electron acceptor (e.g., NAD or NADP)

via hydrolases: use (body) water to break chemical bonds

via transaminases: replace keto group with NH₂

Isotope Rules:

Light isotope (¹H) has weaker bonds (removing H should increase compound δ^2 H)

Less energy to make bonds with light isotope (¹H) (adding H should decrease compound δ^2 H)

Animal Metabolism: Hydrogen

Our First Experiment with Amino Acid δ^2 H: Prokaryotes

Grew *E. coli* in water that varied in δ^2 H from -55 ‰ to +1070‰ (4 Treatments) 2 "Diet" Treatments: Glucose+NH₃ OR Tryptone (protein-rich)

Fogel et al. 2016

Highlights

Huge range in AA δ^2 H values (>300‰) AA_{ESS} are generally lower than AA_{NESS}

Evidence of direct routing of media protein into nearly all AAs (exchange w/cellular water?)

Alanine has high P_{water} regardless of treatment

Pro

Thr

Val

Glucose

Tryptone

Gly

Ser

Asp

Glu

90

80

70

60

50

40

30

20

10

0

Ala

Hydrogen from Water (%)

lleu

Leu

How About a Eukaryote?

Ingredient	Macromolecule	Diet 1	Diet 2	Diet 3	$\delta^2 H (SD)$	[H] (SD)	$\delta^{13}C$ (SD)	[C] (SD)	$\delta^{15}N$ (SD)	[N] (SD)
Casein	Protein	0.05	0.20	0.35	-107 ± 4.2	6.0 ± 0.02	-24.8 ± 0.2	48.4 ± 0.32	5.5 ± 0.3	14.1 ± 0.35
Sucrose	Carbohydrates	0.45	0.30	0.15	-14 ± 4.1	6.3 ± 0.04	-11.7 ± 0.8	41.9 ± 0.15	-	-
Corn Meal	Carbohydrates	0.15	0.15	0.15	-18 ± 4.4	5.8 ± 0.05	-10.8 ± 0.2	47.2 ± 0.05	1.5 ± 0.8	0.8 ± 0.05
Corn Oil	Lipids	0.02	0.02	0.02	-154 ± 4.6	9.6 ± 0.21	-15.5 ± 0.2	73.9 ± 2.65	-	-
Cellulose	Binder	0.25	0.25	0.25	-25 ± 4.0	5.8 ± 0.02	-25.6 ± 0.2	41.9 ± 0.41	-	-
Fortified Salt	Salt	0.04	0.04	0.04	-	-	-	-	-	-
Brewer's Yeast	Yeast	0.02	0.02	0.02	-66 ± 4.1	5.8 ± 0.05	-21.4 ± 0.3	44.0 ± 0.30	3.2 ± 0.2	7.3 ± 0.15
Vitamin Mix	Vitamins	0.01	0.01	0.01	1 ± 4.4	6.3 ± 0.05	-12.9 ± 0.3	39.9 ± 0.38	-	-
	Protein:Carb Ratio	5:60	20:45	35:30						
	Bulk δ ² H	-26.0 ± 3.0	-41.0 ± 3.0	-56.0 ± 3.0						
	Bulk δ ¹³ C	-16.2 ± 0.2	-18.3 ± 0.2	-20.3 ± 0.2						
	Bulk $\delta^{15}N$	2.6 ± 0.7	3.8 ± 0.6	4.3 ± 0.5						

Mauriel Rodriguez Curras

Dietary protein (casein) varied from 5% to 35%; low δ^2 H: -108‰

Dietary carbohydrates varied from 30% to 60%; high δ^2 H: -16‰

Drinking water δ^2 H varied from -95‰ to -50‰ to +5‰

Dietary fat was low and did not vary among diet treatments

Bulk Tissue δ^2 H Results

P_{Water}: 15–26%

P_{Carbs}: 10–35% P_{Protein}: 41–69%

Larger P_{carbs} in low protein diet Larger $P_{protein}$ in high protein diet

More AA *de novo* synthesis in low protein diet More AA routing in high protein diet

Our (Working) Model

Newsome et al. 2020

Example

Essential Amino Acids (Low Protein Diet)

Non-Essential Amino Acids (Low Protein Diet)

How Does Amino Acid $\delta^{2}\text{H}$ Vary Among Trophic Levels?

δ^2 H: Geographic Assignment of Humans

Tracing Region of Origin in Humans

Location	Region	Scalp hair mean (± SD) δ^2 H, ‰	Ν	Tap water mean (± SD) $\delta^2 H$, ‰	n
Alamosa, CO	Southwest	-108 ± 3.2	3	-111 ± 0.8	3
Alexandria, LA	Southern	-80 ± 2.2	3	-22 ± 3.0	4
Big Spring, TX	Southern	-79 ± 1.6	2	-6 ± 0.6	3
Bryon, IL	Midwest	-90 ± 3.7	3	-52 ± 2.2	3
Casper, WY	Northwest	-112 ± 3.7	3	-114 ± 0.8	5
Chicago, IL	Midwest	-100 ± 5.2	2	-44 ± 0.2	3
Conway, AR	Southern	-84 ± 0.8	2	-20 ± 0.7	3
Cut Bank, MT	Northwest	-119 ± 1.8	2	-132 ± 1.2	3
Daluth, MN	Midwest	-91 ± 7.1	2	-66 ± 3.2	4
Dillon, MT	Northwest	-125	1	-133 ± 0.8	3
Evanston, WY	Northwest	-111 ± 7.1	2	-125 ± 3.3	6
Fort Smith, Ar	Southern	-85	1	-31 ± 1.3	3
Lincoln, NE	Midwest	-95 ± 5.7	3	-58 ± 0.6	3
Lusk, WY	Northwest	-114 ± 0.2	2	-131 ± 1.4	3
Mahomet, IL	Midwest	-95 ± 0.2	2	-42 ± 3.0	3
Monroe, LA	Southern	-85 ± 5.9	3	-17 ± 0.7	3
Monticello, UT	Southwest	-103 ± 2.2	3	-94 ± 1.0	3
Muskogee, OK	Southern	-81	1	-23 ± 1.9	3
Paduach, KY	Midwest	-88 ± 1.6	3	-32 ± 1.9	3
Pecos, TX	Southern	-88 ± 0.9	2	-54 ± 2.0	3
Price, UT	Southwest	-115 ± 3.8	3	-116 ± 2.6	3
Rifle, CO	Southwest	-108 ± 1.7	4	-120 ± .8	3
Roosevelt, UT	Southwest	-119.0	1	-113 ± 3.9	3
Roswell, NM	Southwest	-94 ± 0.3	2	-58 ± 1.2	3
Valentine, NE	Midwest	-103 ± 7.3	5	-80 ± 1.0	3
Vaughn, NM	Southwest	-99.0	1	-78 ± 1.9	3
Vernal, UT	Southwest	-93 ± 0.6	3	-113 ± 2.5	4
Wykoff, MN	Midwest	-103 ± 7.5	3	-63 ± 2.7	5

Dr. Christy Mancuso

Tracing Region of Origin in Humans

Take Home Message(s): Amino Acid δ^2 H

For δ^2 H, amino acids (AA) are classified as non-essential and essential and generally mirror patterns seen in δ^{13} C.

Experiments on bacteria and mice show that essential AA δ^2 H are faithful tracers of dietary protein δ^2 H values, while non-essential AA δ^2 H values are more influenced by carbohydrates and (drinking) water.

δ²H analysis of non-essential AA (Ala) may provide a method for assessing region of origin (and movement/migration) at higher resolution than bulk tissue analysis for humans where diet is more controlled.

This approach may allow for tracing sources of water and food in a single tissue sample.

Amino acid δ^2 H analysis is a promising but relatively unexplored proxy. (empty niche waiting to be filled)