Using AA δ^{15} N to Estimate Trophic Level

$$TP_{Trophic-Source} = \frac{\delta^{15}N_{Trophic} - \delta^{15}N_{Source} + \beta_{Trophic-Source}}{TDF_{Trophic-Source}} + C$$

 β and TDF are trophic-source pair specific

Dietary Protein Content Impacts TDF_{Trophic-Source}

Some trophic-source pairs (Pro-Lys) show little change with [dietary protein], while others (Glu-Phe) show a significant decrease.

Variation in TDF_{Glu-Phe}

Consumer–Diet Δ^{15} N: Primary Consumers

Consumer–Diet Δ^{15} N: Tertiary Consumers

Diet Quality and Excretion Mode Matter

Patterns in Amino Acid δ^{15} N: Proxy for Nitrogen Balance?

Marion Island, South Africa

Mirounga leonina

δ^{15} N Values of Many Amino Acids are Higher During Fasting

Gluconeogenesis: A Critical Pathway

Alanine δ^{15} N is Lower During Fasting

Interorgan cycle that transports nitrogen from skeletal muscle to the liver using alanine as a carrier during nutritional stress (i.e., fasting).

No Change in Branch-Chained AAs and Glutamic Acid δ^{15} N

Significant (3-5‰) decreases in $\delta^{15}N$ from early (yolk) to late (placenta) term pregnancy in nearly all AAs (except Phe)

Preliminary results suggest either (1) protein sparing (decrease in $\Delta^{15}N_{consumer-diet}$), and/or (2) nitrogen (^{14}N urea) recycled for reproduction.

Dr. Geraldine Busquets Vass

Developing a Pregnancy Test for a Whale

Take Home Message(s): Amino Acid δ^{15} N

For $\delta^{15}N$, amino acids are classified as source and trophic depending on their involvement in the central metabolic nitrogen pool.

 δ^{15} N analysis of source amino acids (Phe/Lys) provides a way of assessing baseline (primary producer) δ^{15} N composition that is sensitive to environmental conditions by analyzing consumer tissues.

Comparison of trophic and source amino acids can provide an estimate of trophic position that only requires a single consumer tissue sample.

Amino acid $\delta^{15}N$ is also a promising tool to study animal eco-physiology, specifically processes that impact nitrogen balance (reproduction).

At present, too few exist data to robustly assess taxon- and ecosystem-related variation in primary producer β and AA-specific trophic discrimination factors* (especially true for terrestrial and freshwater aquatic ecosystems).