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Abstract
Oxidative status and immune function are energy-demanding traits closely linked to diet composition, particularly resource 
availability and nutritional value. In seasonal environments, nutrient availability and diet quality fluctuate, potentially influ-
encing these traits. However, limited evidence exists regarding these dietary effects on immune function in seasonal environ-
ments. In this study, we employed stable isotope analysis to assess the impact of seasonal changes in niche width and trophic 
level (i.e., δ15N) on two immune variables (hemolysis and hemagglutination scores) and two oxidative status parameters 
(lipid peroxidation and total antioxidant capacity) in three passerine species: Zonotrichia capensis (omnivorous), Troglodytes 
aedon (insectivorous), and Spinus barbatus (granivorous). We found that hemolysis scores varied seasonally in Z. capensis, 
with higher values in winter compared to summer. Total antioxidant capacity (TAC) also increased during the winter in 
Z. capensis and S. barbatus. The isotopic niche width for Z. capensis and S. barbatus was smaller in winter than in sum-
mer, with the omnivorous species exhibiting a decrease in δ15N. Despite the seasonal shifts in ecological and physiological 
traits in Z. capensis, we identified no correlation between immune response and TAC with trophic level. In contrast, in the 
granivorous S. barbatus, the lower trophic level resulted in an increase in TAC without affecting immunity. Our findings 
revealed that dietary shifts do not uniformly impact oxidative status and immune function across bird species, highlighting 
species-specific responses to seasonal changes. This underscores the importance of integrating ecological and evolutionary 
perspectives when examining how diet shapes avian immunity and oxidative balance.
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Introduction

An organism’s ability to maintain homeostasis and survive 
depends largely on its immune system, which provides 
defense against parasites and pathogens a (Janeway et al. 
2005; Abbas et al. 2012). Maintaining a well-functioning 
immune system comes at an energetic cost (King and Swan-
son 2013). As such, an investment in immune defense may 
reduce resources needed for other biological functions like 
growth and reproduction (Bonneaud et al. 2003; Brommer 
2004; Brzęk and Konarzewski 2007; King and Swanson 
2013). Moreover, in addition to the energetic costs, immune 
function can result in self-damage or immunopathology, 
including the generation of reactive oxygen species (Lam-
beth 2007; Stahlschmidt et al. 2015). Thus, the optimal func-
tioning of the immune system would primarily depend on 
environmental and ecological factors that influence nutri-
tional balance (Sheldon and Verhulst 1996; Lochmiller and 
Deerenberg 2000; Norris and Evans 2000). Accordingly, 
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both field and experimental studies suggest that the capac-
ity of organisms to mount an immune response is affected 
by environmental conditions where food availability and diet 
quality are key factors (Buehler et al. 2008, 2009; Hawley 
and Altizer 2011; Martin et al. 2011; Schultz et al. 2020).

In seasonal environments, resource quantity (availability) 
and quality (nutritional value) vary temporally in a some-
what predictable fashion and organisms must be able to 
adjust their physiology to handle such environmental varia-
tion (Klaassen 1995; Nelson et al. 2002; Foster and Kreitz-
man 2010; Versteegh et al. 2012a). Indeed, Gasparini et al. 
(2006), indicates that variation in immune function appears 
when shifts in food resources occur seasonally. For exam-
ple, resource scarcity is an accurate predictor of seasonal 
declines in innate immunity (e.g., complement activity), par-
ticularly in birds (Gasparini et al. 2006; Jackson et al. 2020; 
Schultz et al. 2020). A second physiological attribute that 
may be influenced by seasonal variation in resource availa-
bility (van de Crommenacker et al. 2011) and quality (Carter 
et al. 2021; Cohen et al. 2009) is oxidative status, defined 
as the balance between pro-oxidants and antioxidants (Cos-
tantini 2014; Halliwell and Gutteridge 2015). Oxidative sta-
tus is of special interest to ecologists and eco-physiologists 
because of its strong relationship with animal health (Barja 
and Herro 2000; Halliwell and Gutteridge 2015; Smith et al. 
2016; Costantini 2019; Vágási et al. 2019) and by extension 
with fitness (Cohen et al. 2008; Costantini 2014; Speakman 
et al. 2015; Vágási et al. 2019). For example, the potent anti-
oxidant vitamin E is often provided as a dietary supplement 
to maintain redox balance in poultry (Gallus gallus domesti-
cus; Surai et al. 2019). While an increase in foraging activity 
during periods of low resource availability resulted in an 
increase in the production of pro-oxidants in the Seychelles 
warbler (Acrocephalus sechellensis; van de Crommenacker 
et al. 2011).

While experimental studies (Jimenez et al. 2020; Hawley 
and Altizer 2011; Martin et al. 2011; Schultz et al. 2020) 
have examined the link between diet and changes in immune 
function and/or shifts in oxidative status, it is unknown if 
seasonal adjustments in those physiological conditions 
are related to more complex dietary variables such as the 
diversity of consumed resources or trophic level. Animals 
living in seasonal environments likely experience an expan-
sion of their dietary niche width when preferred resources 
are scarce, which may also result in a concomitant shift in 
trophic position (Jaeger et al. 2010; Maldonado et al. 2017; 
Sanchez-Hernandez et al. 2020). Characterization of sea-
sonal niche variation is important to assess if these more 
complex dietary features are linked with immune and oxida-
tive status.

Stable isotope analysis (SIA) is a widely used tool in stud-
ies of foraging ecology and is especially useful to quantify 
dietary variation and temporal shifts in diet composition at 

both the population and individual level (Hobson and Clark 
1992; Kelly 2000; Peterson and Fry 1987; Newsome et al. 
2015). Here, we use SIA to evaluate the relationship between 
immune function and oxidative state with dietary variation 
and trophic level in three passerines belonging to differ-
ent foraging guilds: the granivorous Black-chinned siskin 
(Spinus barbatus), the omnivorous rufous-collared sparrow 
(Zonotrichia capensis), and the insectivorous house wren 
(Troglodytes aedon). Previous studies show that these spe-
cies at our study site in central Chile shift their diets season-
ally, which in some cases are associated with morphologi-
cal and physiological adjustments (Novoa 1993, Swansson 
2010; Ramirez-Otarola et al. 2018). We hypothesized that 
the constitutive immune variables and antioxidant capacity 
are enhanced in summer relative to winter due to increased 
food (insect and seed) availability during the warmer 
months. We decided to assess the hemolysis and hemaggluti-
nation scores, two components of constitutive innate immu-
nity that represent the first line of defense against infection 
(Ochsenbein and Zinkernagel 2000, Panda and Ding 2015, 
Reyneveld et al. 2020). We used these indices because they 
reflect an individual's ability to eliminate foreign cells and, 
therefore, fight infection (Matson et al. 2005). Additionally, 
these two immune variables are not only related with sur-
vival, but also to other fitness components like fecundity 
and mate selection (Møller and Haussy 2007; Parejo and 
Silva 2009; Roast et al. 2020). Studying how immune func-
tion and oxidative status varies according to environmental 
variables that influence resource availability and quality can 
help us to understand the potential effects of environmental 
change on the adaptive strategies of birds and their popula-
tion dynamics.

Materials and methods

Sample collection. We captured adult birds belonging to 
three passerine species with different dietary habits in austral 
summer (January) and winter (August) of 2021, including 
68 (summer: n = 41; winter: n = 27) Zonotrichia capensis 
(omnivore), 51 (summer: n = 29; winter: n = 22) Troglodytes 
aedon (insectivore), and 34 (summer: n = 14; winter: n = 20) 
Spinus barbatus (granivore). Birds were captured using mist 
nets, between 8:00 and 11:00 am, at Quebrada de la Plata 
(33°30ʹS, 70°54ʹO, 800 m.a.s.l.) in central Chile, a Medi-
terranean locality characterized by hot and dry summers 
and cold winters (Di Castri and Hajek 1976). Sites were 
shortly monitored to choose sampling sites and mist nets 
were installed in shaded areas, left undisturbed, and checked 
every 15 min. After capture, bird body mass was measured 
to the nearest 0.01 g using a precision scale (Bel Italia ES 
1001), then ca. 50–70 µl of blood was collected from the 
brachial vein with heparinized capillaries and stored on ice 
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for transport to the laboratory. We decided to measured body 
mass and not body condition because mass is a valuable 
metric for comparing individuals and populations that is not 
influenced by factors such as feather density or molt stage, 
which can influence body condition scores (Kalnins et al. 
2022). Moreover, body mass is correlated with various fit-
ness traits, including reproductive success and survival in 
numerous bird species (Downs et al. 2019, Kalnins et al. 
2022; Milenkaya et al. 2015; Ruhs et al. 2020, Scanes 2016). 
After blood collection, the birds were released at the site 
where they were captured. The entire duration from when 
the animal was first restrained until blood collection was fin-
ished did not surpass 2 min. At the laboratory, samples were 
centrifuged for 15 min at 18,000g to separate plasma from 
red blood cells (M240R, BOECO Germany). The time that 
elapsed between taking the blood sample and its centrifuga-
tion in the laboratory did not exceed 4 h. Plasma samples 
were stored at − 80 °C for subsequent analysis.

Immune variables. To quantify the constitutive immune 
function of birds, we measured two parameters in plasma 
samples using the hemolysis–hemagglutination assays (Mat-
son et al. 2005): (1) natural antibody-mediated hemaggluti-
nation and (2) complement-mediated hemolysis titers. Given 
our limited sample size, we adjusted the original protocol 
by reducing the plasma volume from 25 μL to 10 μL. As a 
result, we proportionally adjusted the quantity of all reagents 
to ensure appropriate scaling (Brust et al. 2022; Names et al. 
2021; Pigeon et al. 2013). We used a 96-round bottom well 
plate for the hemolysis–hemagglutination assay. We added 
10 µl of phosphate-buffered saline (PBS) from row 2 to row 
12, and then added 10 µl of plasma samples into the first 
and second row, followed by serial dilutions from row 2 to 
row 12. We then added 10 µl of 1% rabbit red blood cells 
(Rockland Immunochemicals Inc.) to each well and mixed 
the plate gently. We covered the plate with parafilm and 
incubated it for 90 min at 37 °C. After incubation, plates 
were tilted at an angle of 45° at room temperature for 20 min 
before we measured the hemagglutination titer. Plates were 
then maintained at room temperature for 70 additional min-
utes before measuring hemolysis score. We expressed the 
hemagglutination and the hemolysis titer as the negative 
log2 of the last dilution in which each function was still 
observable. Samples were randomized with respect to each 
ID and the same person evaluated all scans.

Oxidative status. We assessed oxidative status by meas-
uring two biomarkers in blood plasma samples: (1) total 
antioxidant capacity (TAC) that measures the presence 
of molecular antioxidants, and (2) lipid peroxidation as 
a measurement of oxidative damage. We estimated TAC 
concentrations using a commercial assay kit (Oxiselect 
STA-360, CellBioslabs, Inc). Due to the limited samples 
sizes of plasma, we performed TBARS and TAC assays 
using diluted samples at a 1:10 ratio. For dilutions, we use 

phosphate-buffered saline (PBS) as dilution solution accord-
ing to the protocol provided by the manufacturer (CellBio-
slabs, Inc). We transferred 200 µl of each diluted sample to a 
96-well microplate and then added 180 µl of reaction buffer 
to each well and mixed thoroughly. The initial absorbance of 
each sample was read at 490 nm. Next, 50 µl of copper ion 
reagent was added to initiate the reaction, and then the reac-
tions were incubated for 5 min in an orbital shaker. After the 
incubation period, 50 µl of a stop solution (Part 236004, Cell 
BiosLAb, Inc) was added to each well to cease the reaction. 
Final absorbance was read at 490 nm. The final concentra-
tion was calculated according to the manufacturer’s sugges-
tion using the equation obtained from the regression between 
absorbance and concentration from the standard curve, and 
then multiplied by the dilution factor. The standard curve 
was elaborated using a uric acid standard.

Plasma lipid peroxidation was measured by spectrophoto-
metric determination of Thiobarbituric Acid Reactive Sub-
stances (TBARS) with a commercial assay kit (OxiSelect 
STA- 330, Cell BiosLAb, Inc.) TBARS allows one to quan-
tify malondialdehyde (MDA) concentration in blood plasma. 
The thiobarbituric acid reacts with MDA forming a fluores-
cent compound that can be detected in a spectrophotometer 
(Dasgupta and Klein 2016). We transferred 100 µl of diluted 
each blood plasma sample to separate microcentrifuge tubes, 
added 100 µl of SDS Lysis Solution, and mixed thoroughly. 
The tubes were incubated for 5 min at room temperature. We 
then added 250 µl of TBA reagent to each tube and mixed 
thoroughly, which was incubated for 45 min at 95 °C. After 
the incubation period, each tube was allowed to cool down 
to room temperature. Finally, we transferred 200 µl of each 
microcentrifuge tube to a 96-well microplate and read the 
absorbance at 532 nm. The standard curve contained MDA 
concentrations ranging from 0 to 125 µM. The final con-
centration was calculated according to the manufacturer’s 
suggestion using the equation obtained from the regression 
between absorbance and concentration from the standard 
curve, and then multiplied by the dilution factor. For the 
elaboration of the standard curve we used an MDA standard.

Stable isotope analysis

Upon capture, we obtained a whole blood sample from the 
brachial vein, which was transferred to a clean microscope 
slide and allowed to dry in the field then transported to the 
laboratory. In the laboratory, the samples were dried at 60 °C 
in an oven for an additional week, after which the dried 
whole blood sample were scraped off the slide using a razor 
blade and weighed (0.5–0.6 mg) into tin capsules. Carbon 
(δ13C) and nitrogen (δ15N) values of whole blood reflect 
recent dietary inputs ~ 30–60 days prior to sample collec-
tion (Bauchinger and MacWilliams 2009; Newsome et al. 
2015), so the isotopic composition of this tissue is a robust 
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proxy for seasonal diet (Hobson and Clark 1992; Martınez 
del Rio et al. 2009; Vander Zanden et al. 2015; Maldonado 
et al. 2017). Stable isotope values are expressed using stand-
ard delta (δ) notation as deviations in parts per thousand 
(‰) according to the equation: δX = (Rsample/RStandard − 1) 
× 1000, where X corresponds to 15N or 13C and Rsample and 
Rstandard correspond to the molar ratios of 15N/14N or 13C/12C 
of the sample and reference material, respectively. Carbon 
(δ13C) and nitrogen (δ15N) isotope values were measured 
with a Costech 4010 elemental analyzer (Valencia, CA) cou-
pled to a Thermo Scientific Delta V Plus isotope ratio mass 
spectrometer (Bremen, Germany) at the University of New 
Mexico Center for Stable Isotopes (Albuquerque, NM, USA) 
Stable isotope values are reported in standard delta notation 
(δ) as deviations in parts per thousand (‰) according to the 
following equation: δX = (Rsample/Rstandard − 1) × 1000, 
where X represents 15N or 13C and Rsample and Rstandard 
correspond to the 15N/14N and 13C/12C molar ratios of the 
sample and reference material, respectively. Analyses were 
normalized to three in-house laboratory reference materi-
als that were calibrated against IAEA N1, IAEA N2, and 
USGS 43 for δ15N and NBS 21, NBS 22, and USGS 24 for 
δ13C. Analytical precision was calculated from the analysis 
of reference materials was ± 0.1‰ for both δ13C and δ15N. 
To determine the relative trophic level (TL) of individu-
als in each species, we followed the method described by 
Post (2002) using the formula: TL = (1 + [δ15Nanimal − 
δ15Nproducers]/Δ15N), where δ15Nanimal represents the 
nitrogen isotope values of tissue samples collected from the 
consumer, δ15Nproducers is the isotopic signature of pri-
mary producers at the base of the food web, and Δ15N is the 
trophic discrimination factor. We used a mean Δ15N value 
of 3.4‰, which may slightly underestimate the relative 
trophic position of birds at higher trophic levels as trophic 
discrimination increases with increasing dietary protein con-
tent. (Martinez del Rio et al. 2009). Stable isotopes analysis 
was carried out in the Laboratory of Biogeochemistry and 
Applied Stable Isotopes (LABASI), Pontificia Universidad 
Católica de Chile.

Statistical analysis

Statistical analyses were performed in R through the RStudio 
interface (RStudio version 2022.07.2 + 576) (Posit 2023). 
All data were examined for assumptions of normality and 
homogeneity of variance using Kolmogorov–Smirnov and 
Levene tests prior to statistical analysis. When the variables 
were not normally distributed, we logarithmically trans-
formed data for statistical analysis.

We performed an analysis of variance (ANOVA) sepa-
rately for each species to evaluate differences between sea-
sons in body mass, immune parameters, trophic level, and 
oxidative variables. In some cases, we used a non-parametric 

equivalent test to evaluate significant differences between 
seasons because the data were not normally distributed. To 
evaluate seasonal changes in the δ13C and δ15N values of 
whole blood obtained in winter and summer, we performed 
a multivariate analysis of variance (MANOVA), with isotope 
values as the dependent variables and season as the inde-
pendent factor. δ13C and δ15N values of plants collected at 
our field site did not significantly differ between winter and 
summer (supplementary material), so we did not correct for 
(baseline) seasonal variation in the isotopic composition of 
the base food of the food web. To evaluate the relationship 
between isotopic signature and immunological and oxidative 
variables, we performed analysis of spearman correlations, 
because the data were not normally distributed.

We estimated the isotopic niche width of each species 
using standard ellipse areas corrected for small sample size 
(SEAC; Jackson et al. 2011). To compare isotopic niche 
widths among seasons, we constructed Bayesian standard 
ellipse area (SEAB) with Markov chain Monte Carlo simula-
tions (10,000 iterations) using Stable Isotope Bayesian Ellip-
ses in R (SIBER; Jackson et al. 2011), which allowed us to 
estimate the probability that isotopic niches were larger or 
smaller than one another.

Results

We found a significant increase in body mass in winter com-
pared with summer in both T. aedon (F1,28 = 9.52, p = 0.01) 
and S. barbatus (F1,5 = 15.5, p = 0.01; Table 1); no differ-
ences in body mass were observed between seasons in Z. 
capensis (F1,38 = 2.89, p = 0.09; Table 1). Regression analy-
sis showed that immunological variables and oxidative 
parameters were unaffected by body mass for any species 
(see Table S1).

Hemolysis scores in Z. capensis were significantly higher 
in winter than summer (F1,48 = 6.01, p = 0.02; Fig. 1a), while 
no seasonal variation was observed in T. aedon (F1,26 = 0.05, 
p = 0.82) and S. barbatus (F1,5 = 0.43, p = 0.54). Hemagglu-
tination scores did not differ between seasons for any spe-
cies (Fig. 1b); Z capensis: F1,48 = 0.12, p = 0.74; S. barbatus: 
F1,5 = 1.57, p = 0.27; T. aedon: F1,26 = 0.18, p = 0.68. Blood 

Table 1   Mean (± SE) body mass of Z. capensis, T. aedon, and S. bar-
batus captured in summer and winter

Different letters denote significant differences

Species Body mass (g)

Summer Winter

Zonotrichia capensis 20.6 ± 0.5a 21.7 ± 0.2a

Troglodytes aedon 9.7 ± 0.2a 10.5 ± 0.2b

Spinus barbatus 14.3 ± 0.7a 15.2 ± 0.4b
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plasma TAC were higher in winter than summer (Fig. 2a) 
for Z. capensis (F1,7 = 5.31, p = 0.02) and S. barbatus 
(F1,5 = 11.41, p = 0.02, while no seasonal differences were 
observed in T. aedon (F1,8 = 0.02, p = 0.89). Lipid peroxida-
tion did not differ between seasons for any species (Fig. 2b); 
Z. capensis: F1,38 = 1,23, p = 0.27; S. barbatus: F1,5 = 0.53, 
p = 0.58; T. aedon: F1,8 = 0.09, p = 0.78.

We found significant differences between seasons in the 
isotopic niche of all three species (MANOVA; Z. capensis: 

F1,30 = p = 0.002; T.aedon: F1,32 = 9.2, p < 0.001; S. bar-
batus: F1,29 = 7.57, p = 0.002). Analysis showed that Z. 
capensis had higher δ15N values in summer (ANOVA; 
F1,59 = 8.46, p = 0.005) (Fig. 3). Instead, δ15N values in 
T. aedon (ANOVA; F1,32 = 5.33, p = 0.16) and S. barbatus 
(F1,30 = 1.42, p = 0.24) did not differ between seasons. The 
δ13C values were higher during summer than in winter 
in S. barbatus (ANOVA; F1,30 = 15.05, p = 0.0005) and T. 
aedon (ANOVA; F1,33 = 22.02, p < 0.001). The correlation 

Fig. 1   Hemolysis and hemagglutination scores of Z. capensis, T. 
aedon and S. barbatus captured in summer (open boxes) and winter 
(closed boxes). In panel (a), the hemolysis score was higher in win-
ter than in summer for Z. capensis; whereas for the other species, the 
hemolysis score did not show significant differences between the two 
seasons. In panel (b), the hemagglutination score did not exhibit sig-

nificant differences between summer and winter for any of the spe-
cies. Error bars represents the 95% confidence interval, the bottom 
and top of the box corresponds to the 25th and 75th percentiles, the 
line inside the box represent the 50th percentile (median), and outli-
ers are shown as closed circles

Fig. 2   “Hemolysis and hemagglutination scores of Z. capensis, T. 
aedon, and S. barbatus captured in summer (open boxes) and winter 
(closed boxes). In panel (a), the hemolysis score was higher in win-
ter than in summer for Z. capensis; whereas for the other species, the 
hemolysis score did not show significant differences between the two 
seasons. In panel (b), the hemagglutination score did not exhibit sig-

nificant differences between summer and winter for any of the spe-
cies. Error bars represents the 95% confidence interval, the bottom 
and top of the box corresponds to the 25th and 75th percentiles, the 
line inside the box represent the 50th percentile (median), and outli-
ers are shown as closed circles.”
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analysis revealed that neither the hemolysis nor the hemag-
glutination score showed a significant correlation with 
tissue δ15N values of any species (Table 2). As for the 
oxidative status variables, we observed a significant and 
negative correlation between the levels of TAC and the 
mean δ15N value of S. barbatus during winter; however, we 
did not find significant correlations for the other species 
and seasons (Table 2).

Isotopic niches of Z. capensis and S. barbatus were 
smaller in winter than summer (p < 0.05, Table 3), while 
the isotopic niche of T. aedon was similar in size between 
seasons (Table 3, Fig. 3). The degree of overlap in iso-
topic niche between seasons was 20% for Z. capensis, 17% 
for T. aedon, and 24% for S. barbatus (Fig. 3). Finally, 
Z. capensis occupy a higher trophic level in summer than 
in winter (p < 0.05, Table 3), while the trophic level of T. 
aedon and S. barbatus remains constant between seasons 
(Table 3).

Fig. 3   Standard ellipses (SEAC) estimated from carbon (δ13C) and 
nitrogen (δ15N) isotope values of blood collected in summer (black) 
and winter (red) for a Zonotrichia capensis, b Troglodytes aedon, and 
c Spinus barbatus captured in central Chile. Each point represents an 
individual and ellipses represent the 95% ellipse area. Numbers next 
to each ellipse correspond to the size (‰2) of each ellipse. The iso-
topic niche width of Z. capensis and S. barbatus is smaller during 
winter, while there are no significant differences in the isotopic niche 
width between seasons for T. aedon, suggesting a relatively consistent 
trophic niche throughout the year

Table 2   Correlation analysis between the innate immunological and 
oxidative variables and isotopic signature δ15N in summer and winter 
for Z. capensis, T. aedon, and S. barbatus

Significant correlations are presented in bold

Species Season Variable δ15N

Zonotrichia 
capensis

Summer Hemolysis r = 0.11 p = 0.51
Hemagglutina-

tion
r = − 0.08 p = 0.65

Lipid peroxida-
tion

r = − 0.03 p = 0.91

TAC​ r = − 0.26 p = 0.22
Winter Hemolysis r = − 0.17 p = 0.44

Hemagglutina-
tion

r = − 0.08 p = 0.72

Lipid peroxida-
tion

r = 0.19 p = 0.91

TAC​ r = − 0.09 p = 0.74
Troglodytes 

aedon
Summer Hemolysis r = 0.37 p = 0.24

Hemagglutina-
tion

r = 0.09 p = 0.79

Lipid peroxida-
tion

r = 0.41 p = 0.49

TAC​ r = − 0.21 p = 0.75
Winter Hemolysis r = 0.55 p = 0.1

Hemagglutina-
tion

r = 0.03 p = 0.93

Lipid peroxida-
tion

r = − 0.09 p = 0.85

TAC​ r = − 0.59 p = 0.16
Spinus barbata Summer Hemolysis r = 0.04 p = 0.6

Hemagglutina-
tion

r = − 0.17 p = 0.26

Lipid peroxida-
tion

r = − 0.03 p = 0.6

TAC​ r = 0.02 p = 0.6
Winter Hemolysis r = − 0.21 p = 0.74

Hemagglutina-
tion

r = − 0.2 p = 0.8

Lipid peroxida-
tion

r = − 0.3 p = 0.62

TAC​ r = − 0.85 p = 0.001
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Discussion

Some studies have proposed that variation in bird immunity 
among seasons is primarily driven by a trade-off between 
reproduction and molt (Sheldon and Verhust 1996; Martin 
2005; Moreno-Rueda 2010; Hegemann et al. 2012), or possi-
bly due to higher parasite loads in the wet versus dry season 
in tropical environments (Horrocks et al. 2015). Other stud-
ies have proposed that seasonal shifts in immune function 
are the result of changes in resource availability and/or qual-
ity (Gasparini et al. 2006; Jackson et al. 2020). We tested 
the hypothesis that immune function and oxidative status 
shift seasonally and are correlated with dietary breadth and 
trophic level and found partial support for our predictions.

Contrary to S. barbatus and T. aedon, which showed sea-
sonal shifts in only one dietary niche variable, the omnivo-
rous species Z. capensis exhibited significant changes in 
both niche breadth and trophic position (Table 3). Specifi-
cally, Z. capensis exhibited a decrease in dietary diversity 
and relative trophic level during the winter. Our findings are 
consistent with those reported by Lopez-Calleja (1995), who 
observed that Z. capensis reduces its consumption of insects 
during winter, leading to a narrower trophic niche breadth. 
This decrease in insect consumption is likely a result of the 
reduced insect abundance during the winter season (Lopez-
Calleja 1995). In contrast, S. barbatus exhibited a reduc-
tion in its isotopic niche during winter, but this change was 
not accompanied by a shift in δ15N or relative trophic level 
(Table 3), suggesting that this species maintains a consistent 
trophic position throughout the year (Ramirez-Otarola et al. 
2011; Fuentes-Castillo et al. 2016). In contrast, insectivorous 
T. aedon exhibited no seasonal change in δ15N values, iso-
topic niche width, or trophic level (Table 3). The observed 
results could be the result of this species’ diet being domi-
nated by insects in both summer and winter (Ramirez-
Otarola et al. 2011).

The analysis of immune variables revealed that only Z. 
capensis exhibited seasonal differences in immune capacity, 
as indicated by hemolysis scores. Considering this finding 
and the observed seasonal changes in the trophic niche and 
trophic level of Z. capensis, higher seed intake during winter 
may be linked to increased consumption of specific nutri-
ents, such as vitamins, carbohydrates, and fatty acids (Klas-
ing 1998; Twining et al. 2016; Al-Khalaifah and Al-Nasser 
2021). These nutrients have been shown to enhance T-cell 
development (Humprey and Rudrappa 2008) and modulate 
humoral and cellular immunity in poultry (Bhanja et al. 
2015). However, the correlation analyses between δ15N and 
hemolysis and hemagglutination scores did not reveal any 
significant associations. Therefore, the observed seasonal 
change in hemolysis scores may not be directly related to 
shifts in resource use between seasons and may be more 
related to life history and environmental conditions, which 
have been shown to influence immune function (Bowden 
et al. 2007; Hasselquist et al. 2007; Moore and Siopes 2002; 
Nelson and Demas 1996; Nelson et al. 2002; Pap et al. 2015; 
Schultz et al. 2020; Weil et al. 2015). For example, previous 
studies on both captive and wild birds reported that immune 
function is enhanced in winter due to abiotic conditions such 
as photoperiod (Nelson and Demas 1996; Nelson et al. 2002; 
Moore and Siopes 2002; Weil et al. 2015), parasitism (Has-
selquist et al. 2007; Pap et al. 2015) or decreases in ambient 
temperature (Bowden et al. 2007; Schultz et al. 2020). Our 
Mediterranean study site is characterized by marked season-
ality with hot/dry summers and cold/wet winters, environ-
mental cues that are known to trigger metabolic responses in 
these passerine species (Maldonado et al. 2009) and, there-
fore, could also account for the observed seasonal variation 
in immune response. Furthermore, the absence of seasonal 
changes in the immune variables in T. aedon and S. barbatus 
may be attributed to the same factors mentioned previously. 
These could include lower abundance of parasites (Pap et al. 

Table 3   Mean (± SD) δ13C and δ15N values, trophic level and associated estimates of standard ellipse areas of blood collected from Z. capensis, 
T. aedon, and S. babartus in summer and winter

Samples sizes are noted in parentheses next to season of collection. Different letter denotes significant differences between seasons

Species δ13C (‰) δ15N(‰) SEAB (‰2) p Trophic level F, df, p

Mean 95% CI

Zonotrichia capensis
 Summer (n = 41) − 23.0 ± 1.6 7.6 ± 1.9 9.1 6.3–12.1 0.009 2.3 ± 0.09a F1,63 = 6.02, p = 0.02
 Winter (n = 27) − 23.1 ± 0.5 6.1 ± 1.6 2.6 1.6–3.7 1.7 ± 0.47b

Troglodytes aedon
 Summer (n = 29) − 23.0 ± 1.1 8.2 ± 2.5 8.3 5.0–12.0 0.11 2.2 ± 0.11a F1,41 = 2.61, p = 0.11
 Winter (n = 22) − 24.5 ± 1.1 10 ± 1.7 5.3 2.6–8.5 2.7 ± 0.16a

Spinus barbatus
 Summer (n = 14) − 21.6 ± 2.3 9.9 ± 1.9 14.9 6.7–23.2 0.002 2.5 ± 0.3a F1,31 = 0.014, p = 0.91
 Winter (n = 20) − 23.7 ± 0.8 9.1 ± 1.8 4.9 2.8–7.1 2.6 ± 0.27a



402	 Oecologia (2023) 203:395–405

1 3

2010a) or hormone levels (e.g., melatonin) (Martin et al. 
2008; Pap et al. 2010b).

Based on previous studies, omnivorous birds are more 
susceptible to a broader range of pathogens due to their 
diverse food sources in comparison to strictly granivorous 
or insectivorous species (Bandelj 2015; Dolnik et al. 2010). 
Conversely, it has been observed that the presence of patho-
gens varies between seasons in both tropical (Ferreira Junior 
et al. 2017) and temperate habitats (Tinsley et al. 2011). 
Therefore, to what extent the omnivorous Z. capensis is 
susceptible to pathogens, which would necessitate a more 
efficient and adaptable immune system to counter the patho-
gens encountered in each season, is a topic that needs further 
attention.

The TAC levels in Z. capensis and S. barbatus were 
highest in winter, and lipid peroxidation remained constant 
between seasons in all species (Fig. 2). Additionally, correla-
tion analysis revealed that δ15N values were not correlated 
with either TAC or lipid peroxidation levels in any season 
in Z. capensis. In contrast, we observed a significant nega-
tive correlation between TAC and δ15N values in S. baratus 
during the winter season. These findings suggest that higher 
consumption of plant-derived resources in S. barbatus may 
be associated with elevated TAC levels, but this association 
appears to occur only in the winter months. We hypothesize 
that S. barbatus may focus on just a few preferred high-
quality plant resources in winter, resulting in narrow isotopic 
niches relative to summer (MacArthur and Pianka 1966), 
which is consistent with the observation of higher body 
mass in birds during this season (Table 1). This reduction in 
resource diversity may yield an increase in the consumption 
of specific nutrients and result in an increase in the expres-
sion of exogenous antioxidants that would enhance TAC. 
For example, birds cannot synthesize the essential fatty acid 
linoleic acid (Griminger 1986) and must acquire this com-
pound from their diet (Lands 2016). Most seeds are rich 
in this nutrient (Bewly and Black 1982) and studies show 
that diets rich in linoleic acid enhance the enzymatic-origin 
antioxidant capacity in rats (Kim et al. 2005), pigeons (Xu 
et al. 2020), and chickens (Zhang et al. 2008).

On the other hand, we acknowledge that observed sea-
sonal changes in TAC in Z. capensis and S. barbatus may 
be the result of other factors independent of diet because 
concentrations of antioxidants in birds are affected by mul-
tiple variables including hormone levels, life history traits, 
and ambient temperature (Lin et al. 2008; Cohen et al. 
2008; Cohen et al. 2009a; Norte et al. 2009). For exam-
ple, Xia and Moller (2018) demonstrated that long-lived 
bird species have higher TAC than short-lived species. 
In contrast to the other two species, we did not observe 
any seasonal changes in lipid peroxidation or antioxidant 
capacity in T. aedon (Fig. 2a). Finally, changes in TAC 

concentration were not related to shifts in hemolysis scores 
in summer or winter for Z. capensis and S. barbatus (Sup-
plementary Material), suggesting these variables may rep-
resent different aspects of health in these species.

In conclusion, our study findings indicate that seasonal 
variation in the diet of two of the three study species were 
not correlated with changes in some components of the con-
stitutive innate immunity. The seasonal change in hemolysis 
score observed in Z. capensis is an interesting result because 
this immune variable is related to survival, fecundity, and 
mate selection (Møller and Haussy 2007; Parejo and Silva 
2009; Roast et al. 2020), Thus, the modifications of hemoly-
sis score between seasons in Z. capensis may be a benefit in 
terms of increased fitness. On the other hand, in the case of 
S. barbatus, the antioxidant capacity was found to be related 
to diet characteristics in winter. We hypothesize that this 
relationship is driven by seasonal variation in the consump-
tion of specific nutrients that enhance the antioxidant capac-
ity but not the immune function. However, our results should 
be interpreted with caution because we did not measure the 
nutritional content of diets available in summer and winter. 
Further evaluation of the relationship of resource nutritional 
quality, especially in terms of specific (essential) nutrients, 
and immune function and oxidative state is required to bet-
ter understand of the effect of seasonal dietary variation on 
the performance and fitness of wild birds. Furthermore, it 
is important to acknowledge that the analysis of only two 
constitutive immune and oxidative variables may pose a 
limitation in interpreting our results comprehensively. We 
cannot rule out the possibility that other types of immune 
responses, such as cellular-mediated immune responses, 
might be affected by seasonal changes in diet. For instance, 
Gasparini et al. (2006) reported a seasonal decline in IgY 
levels in Rissa tridactyla chicks, highlighting the impor-
tance of analyzing other variables to better understand the 
impact of seasonal changes in diet quality and availability 
on immune function and oxidative status. Finally, we are 
fully aware that physiological attributes can be influenced 
not only by ecological factors (e.g., diet composition) but 
also by phylogeny (Bloomerg and Garland 2002). Due to 
limitations in the number of available species for this study, 
which do not allow for phylogenetic informed analyses, we 
have chosen to focus solely on the dietary aspect. Neverthe-
less, caution must be exercised when interpreting the results 
obtained, as there may be underlying effects of phylogenetic 
history on immune function. Therefore, further investiga-
tions that consider the potential effects of phylogenetic rela-
tionships between species are necessary to gain a more com-
prehensive understanding of the seasonal changes in natural 
diet, immune function, and oxidative status.
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